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Abstract. The digital Earth framework is a multiresolution 3D model
used to visualize location-based data. In this paper, we introduce a new
digital Earth framework using a cube as its underlying polyhedron. To
create multiresolution, we introduce two types of 1-to-2 refinement. Hav-
ing a smaller factor of refinement enables us to provide more resolutions
and therefore a smoother transition among resolutions. We also suggest
two indexing methods specifically designed for quadrilateral cells result-
ing from 1-to-2 refinement. We finally discuss the equal area spherical
projection that we are using in this framework to model the Earth as a
sphere partitioned to equal area cells.

Fig. 1. (a)A cube (b) The cube after applying dual 1-to-2 refinement three times. (c)
The refined cube is projected to the sphere using an equal area spherical projection.
(d) The spherical cube at a high resolution. (e)The resulting spherical polyhedron is
textured using a blue marble image. The blue marble texture is taken from [1].

1 Introduction

The digital Earth is a framework which represents the Earth as a multiresolution
3D model, and visualizes location-based data. Through this framework, users are
able to zoom-in, zoom-out and analyze the data at different levels of detail. This
framework has many applications in various fields such as computer science,
cartography, and Geo-information systems. Google Earth is a particular well
known and developed example of a digital Earth framework [2]. In this frame-
work, the Earth is represented using traditional latitude longitude discretization
of the Earth. As highlighted in [3], this representation creates issues regarding
accuracy, replicability, and documentation.
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It is possible to address these issues with a more regular representation of the
Earth using a Geodesic Discrete Global Grid System (GDGGS) [4]. In GDGGS,
the Earth can be approximated by a polyhedron whose faces are refined and
projected to the sphere (Fig 1). These projected faces are called cells. Using a
data structure, location-based data such as borders of countries, height maps,
and texture data, are associated with these cells. In fact, a GDGGS has five fun-
damental parts: the base polyhedron, type of cells, type of refinement, spherical
projection, and the employed data structure.

There are several viable polyhedrons that can be used to represent the Earth.
In our framework, we use a cube as the underlying polyhedron to represent the
Earth. This is reasonable, since a cube is the only polyhedron that can provide
quadrilateral cells. Quadrilateral cells are more compatible with hardware and
display devices and they are also compatible with familiar Cartesian coordinates.

It is common to use 1-to-4 refinement to support multiresolution or a hier-
archical representation for the cells of a cube. In this refinement, each cell is
divided into four cells by inserting a vertex in the midpoint of edges. As a result,
the number of cells grow exponentially by a factor of four from one resolution to
the next. However, choosing a refinement with smaller factor results in a more
gradual change in the resolution. In our framework, we use 1-to-2 refinement
as it is the minimum factor of refinement. This results in a smooth transition
between resolutions, creating an efficient representation for geographic features.

In order to have a spherical representation of the Earth, we need to project
faces of a refined polyhedron to the Earth using a spherical projection. Spherical
projections may create angular and areal distortion. Equal area projections pre-
serve the area. This projection is commonly used for the digital Earth frameworks
since it eases the analysis of data associated with cells. As a result, our frame-
work incorporates an equal area spherical projection that is designed specifically
for the grids forming on faces of a cube (see Section 3.3 for more details) [5].

To associate data with cells and to handle adjacency and hierarchical queries,
a spatial data structure is needed. In digital Earth frameworks, data can be
assigned at very high resolutions. As a result common spatial tree structures
might not be efficient [6]. Indexing methods are designed to replace the tree
structure. In this paper, we suggest two indexing methods that are adapted for
1-to-2 refinements of a cube.

Our contribution is to provide a new digital Earth framework using a spher-
ical cube as the Earth’s representation. We introduce 1-to-2 refinements to pro-
vide multiresolution among the cells with the slowest factor of growth. We then
provide two indexing methods for the cells, resulting from the refinement, and
we suggest an equal area projection.

In Section 2, we discuss the related work of our method. Our proposed frame-
work is introduced in Section 3. We then provide some results and discussion in
Section 4. Conclusion and future work are presented in Sections 5.
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2 Related Work

The Earth’s surface can be partitioned into regular cells using a method called
Geodesic Discrete Global Grid System (GDGGS)[7]. As we discussed earlier,
GDDGS are distinguished based on their underlying polyhedron, type of cells,
refinement, projection and their employed data structure [7]. We highlight some
work related to each of these elements.

Underlying Polyhedrons: Different polyhedrons including platonic solids
and truncated icosahedron have been used as an approximation of the Earth [8–
11]. Among these polyhedra, spherical cubes have been traditionally used as the
Earth representation [12] and they are still commonly used for spherical repre-
sentations. Cubes are very popular since they can provide regular quadrilateral
cells that are hardware-efficient, and adaptable with display devices, existing
data structures, and familiar Cartesian coordinates. As a result, they are used
as the base for a sphere in many applications such as terrain rendering, environ-
mental mapping, game design, surface modeling, [13–16, 8] as well as the Earth
representation [17, 8]. In this paper, we use a cube as an underlying polyhedron
for a digital Earth framework.

Type of Cells: Cells of GDGGS can be hexagons, quads or triangles. For
example, Dutton uses the triangular faces of an octahedron [10]. Some Digital
Earth frameworks also employ hexagonal cells as the base cells (see [18] for a
complete survey). However, as mentioned earlier, quadrilateral cells have been
used more commonly. In this paper, we also use squares as the base cells of our
proposed digital Earth framework.

Type of Refinement: Refinements are mostly applied to subdivision sur-
faces to create smooth graphical objects [19]. Refinement methods are also used
to create levels of detail for a digital Earth framework. A 1-to-n refinement di-
vides a cell with an area of A into cells with an area of A

n where n is the factor
of the refinement or aperture of the digital Earth framework [4].

It is common, for digital Earth frameworks that use a cube as the underlying
polyhedron, to use 1-to-4 refinement. However, refinements with smaller factors
are desirable for the digital Earth framework, since it is possible to provide more
resolutions under the fixed maximum number of cells. 1-to-2 refinement provides
the smallest factor of refinement among the refinements, therefore, it creates
smooth transition among cells. In this paper, we introduce 1-to-2 refinement for
constructing the resolutions.

Data Structure: To assign data to cells and handle necessary inquiries,
a spatial data structure is required. The quadtree is one of the most common
data structure for quadrilateral cells. To make quadtrees more efficient at high
resolutions, some indexing methods have been proposed [20, 6]. Indexing methods
can be constructed based on space filling curves, hierarchy of cells at successive
resolutions, or a coordinate system defined for the cells [13, 20, 21]. We suggest
two kinds of indexing methods based on the hierarchy and a defined coordinate
system of cells resulting from 1-to-2 refinement on quadrilateral cells.

Spherical Projection: Digital Earth frameworks vary based on their em-
ployed spherical projection. Different projections such as conformal, gnomonic,
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or equal area can be used to represent the Earth [22]. When a spherical projec-
tion is used, two types of distortion might appear: angular distortion and areal
distortion. The projection that preserves the area is called equal area. This pro-
jection has been widely used for representing the Earth [17, 23, 5, 11]. Some equal
area projections may reveal specific disadvantages. For example, they may create
singularities at specific points [17], or iterative techniques, that slow down the
handling of inquiries, are used to find its inverse relations [23, 24]. We suggest
to use a spherical area projection that is specifically designed for cubes and has
a closed form for both projection and inverse projection mappings [5].

3 Framework

In previous sections, we described the elements necessary for a digital Earth
framework modeled by a Geodesic Discrete Global Grid System. As we dis-
cussed earlier, the underlying polyhedron of our framework is a cube and the
cells are quadrilaterals. In this section, we describe other elements of our pro-
posed framework. We first describe 1-to-2 refinement and explain some of its
properties. Then, we discuss two possible indexing methods for such a frame-
work. We eventually describe the projection that we use in our proposed digital
Earth framework.

3.1 Refinement

Using the concept of lattices to analyze the behavior of refinement methods is
very common [25]. To describe the refinement of our proposed method, we also
use lattices. Consider a square regular lattice L0 (see Fig 2(a)). In L0, each
vertex is connected by four edges to its nearest neighbors.

v3

(a) (b) (c)

v2

v1v0

Ci

wi Fig. 2. (a) A portion of square regular lat-
tice L0. (b) 1-to-4 refinement applied on L0.
Orange circle are newly inserted vertices in
L0. (c) Vertices v0, v1, v2, and v3 create cell
Ci. wi is inserted in the midpoint of Ci.

The traditional 1-to-4 refinement is very common for quadrilateral cells (Fig
2(b)). However, as discussed earlier, having a refinement with lower factor is
desirable. 1-to-2 refinements for quadrilateral cells have the smallest factor of
refinement. Two types of 1-to-2 refinement are defined for L0. Consider vertex
v0 and three vertices v1, v2 , and v3 making cell Ci (Fig 2(c)). We insert a vertex
wi in the midpoint of Ci and connect wi to its nearest vertices v0, v1, v2 , and
v3 (Fig 2(c)) and then discard the old edges. If this refinement is applied on all
cells, lattices illustrated in Fig 3 are obtained. This refinement is used by

√
2

subdivision for smoothing graphical objects [26].
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(a) (b) (c) (d)

Fig. 3. (a) Inserting midpoints in all cells
of L0. (b) Connecting midpoints to their
closest vertices. (c) Removing old edges. (d)
The lattice after two iterations of 1-to-2
refinement.

The other 1-to-2 refinement for quadrilaterals is defined by inserting new
vertices in the midpoint of edges. Again consider lattice L0 and cell Ci with
vertices v0, v1, v2, and v3. These vertices form edges e0, e1, e2 , and e3 as
illustrated in Fig 4 (a). To refine cell Ci, vertex wi is inserted in the midpoint of
edge ei (0 ≤ i ≤ 3). Afterwards, wi is connected to wi+1 (w3 is connected to w0)
in order to make a new cell. Finally, all edges ei and vertices vi are discarded.
Fig 4 illustrates steps of refining cell Ci.

(a)

v0 v1

v2v3

e0

e1

e2

e3

w0

w1

w2

w3

(b)

w0

w1

w2

w3

(c)

Fig. 4. (a) Edges creating cell Ci. (b) In-
serting midpoints wi at the midpoint of
edges. (c) Connecting new vertices and cre-
ating a new cell.

Figure 5 illustrates application of 1-to-2 refinement on all cells of L0. This
type of 1-to-2 refinement is also created if we apply simplest subdivision method
on a regular grid [27]. If we apply this refinement twice the lattice illustrated in
Fig 5(d) is obtained.

(a) (b) (c) (d)

Fig. 5. (a) Inserting vertices at the mid-
point of edges. (b) Connecting new vertices.
(c) Discarding old vertices and edges. (d)
Refining L0 twice using 1-to-2 refinement.
L0 is illustrated in red.

To distinguish these 1-to-2 refinements, we call the first one primal (Fig 3)
and the second one Dual (Fig 5). In dual 1-to-2 refinement, cells at two successive
resolutions have the same midpoints. Such refinements are called aligned or
central place [4]. These types of refinements have some advantages in compared
to the alternative.

In GDGGS, the midpoints of cells at resolution r denoted by mr are inter-
preted as a sample point of the entire cell. Accuracy, here means the error for
representing points by cells, where error is the distance between mr and a given
point p. One of the advantages of dual 1-to-2 refinement is that increasing the res-
olution enhances the accuracy since the distance between mr and p is decreased
by increasing the resolution. This means dr ≤ dr+1 where dr = ‖p−mr‖2 How-
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ever, this characteristic is not guaranteed in some other refinements such as the
common 1-to-4 refinement. Fig 6 illustrates this scenario and compares primal
1-to-4 refinement and dual 1-to-2 refinement.

d0 d1

d1

(a) (b) (c)

m0

p

m1

p

m1

p

d1=d0 d1>d0

Fig. 6. (a) d0 is the distance between m0,
and point p illustrated by the red square.
(b) After one iteration of dual 1-to-2 refine-
ment, the accuracy is at least as the pre-
vious resolution. (c) After one iteration of
1-to-4 refinement, d1 is bigger than d0. In-
creasing the resolution may decrease the ac-
curacy in primal 1-to-4 refinement.

3.2 Indexing

Using indexing methods for handling spatial queries is common. These queries
include determining the location of a cell, its neighbors and its position in the
hierarchy of cells. Here, we suggest two possible indexing methods for dual 1-
to-2 refinements. These indexing methods can be used for the primal 1-to-2
refinement with slight modifications. The first indexing method is similar to
the hierarchy-based indexing designed for quadtrees [20] and hexagonal cells [4,
28]. The second proposed indexing is adopted based on the coordinates of cells
at successive resolutions [29, 21, 4]. We call the first method, hierarchy-based
indexing and the second one, coordinate-based indexing.

Hierarchy-based Indexing Method Hierarchy-based indexing methods are
defined based on the relationships between cells at successive resolutions after the
refinement. These indexing methods are very efficient in handling hierarchical
queries. In our proposed indexing method, faces of the initial spherical cube are
considered as the cells in resolution 0. In dual 1-to-2 refinement, for a cell Cr

at resolution r, there is a cell Cr+1 with the same midpoint (Fig 7(a)). Cr+1 is
called the midpoint child of Cr and Cr is called the parent of Cr+1. Cr has four
other children whose midpoints are aligned with vertices of Cr (Fig 7(b)). These
children are called vertex children. If cell Cr has index α at resolution r, its
midpoint child has index α0 and four other children have indices αi, 1 ≤ i ≤ 4,
based on their position with respect to Cr. Fig 7(c) illustrates such an indexing
for a cell at resolution r.

In hierarchy-based indexing, hierarchical access is handled by appending dig-
its to a cell’s index to access its children, or truncating a part of its index to
access its parents. Neighbors of cells are found through a look-up table determin-
ing the algebra of such 1D indices. Vince [28] has provided such a look-up table
for a similar indexing for hexagons resulting from refining an icosahedron. We
can adapt it for the quadrilaterals resulting from the cube. In [28], an index is
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(a)

Cr

Cr+1

Cr

(b)

a

(c)

a0

a1

a2a3

a4

Fig. 7. (a) Cells Cr and Cr+1 share the
midpoint. (b) Vertex children of Cr are il-
lustrated in green. (c) If Cr has index α, its
children have indices as illustrated.

created using the elements of set Λ = {0, 1, 2, 3, 4, 5, 6} since it indexes hexagonal
cells with neighbors in 6 directions. However, in our method this set is changed
to Λ = {0, 1, 2, 3, 4} and therefore the look-up table is modified accordingly.
Note that the singularities of an icosahedron are pentagons but singularities of
a cube are triangles; both are located at the vertices of the initial polyhedron.
Triangles produced at the corners are indexed similar to quadrilaterals but they
have three neighbors.

Coordinate-based Indexing Method Coordinate based indexing is another
type of indexing method in which faces of polyhedrons are typically unfolded
onto the plane. An index is then defined for each cell by snapping the vertices
or midpoint of cells on the integer coordinates [21, 11, 29]. In this section, we
introduce coordinate-based indexing for quadrilaterals resulting from dual 1-to-
2 refinement applied on the faces of a cube.

(a)

U

V

(0,0) (1,0)

(1,1)(0,1)

(b) (c)

(u,v) (u+1,v)

(u,v+1)

(u,v-1)

(u-1,v)

Fig. 8. (a) Coordinate system defined for
cells of L0 (b) Indices of cells. (c) Cell (u, v)
(orange) and its neighbors (green).

To describe this indexing, we again use the concept of lattices for representing
the connectivity of cells. Consider L0 as previously defined in Section 3.1. We
take two vectors with a 90◦ difference connecting midpoints of two adjacent cells
as the unit vectors (U and V) making a coordinate system for cells (Fig 8). We
can allow the midpoint of any cell to be the origin of the coordinate system. With
respect to this coordinate system, midpoints of cells can get integer coordinates.
These coordinates (u, v) are considered as the index of cells.

In this indexing, neighborhood finding queries are handled by simple alge-
braic operations. A cell with index (u, v), has neighbors (u + 1, v), (u, v + 1),
(u, v−1), and (u−1, v) (Fig 8(c)). As well as neighborhood finding, the indexing
scheme must be capable of handling hierarchical access queries. Therefore, we
need to index cells at various resolutions and find a hierarchical access relation
between cells at various resolutions.
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We use Lr for the lattice obtained from applying r times of 1-to-2 refinement
on L0. To index L1, we take the same origin as the one chosen for L0. We define a
coordinate system for L1 by considering the vectors connecting midpoints of two
adjacent cells as the main vectors of the coordinate system (Fig 9(a)). We index
cells according to this new coordinate system. To distinguish cells at different
resolutions, we use a subscript indicating the resolution. As a result, a cell with
index (u, v)r is at resolution r and is u and v steps away from the origin, in the
direction of the U and V axes respectively.(see Fig 9(b)).

U V

(0,0)1

(1,0)1 (0,1)1

(2,0)1

(-1,1)1

(-2,1)1

(-3,1)1

(-1,0)1

(a) (b) (c)

Fig. 9. (a) Coordinate system defined for
cells of L1. L0 is illustrated in orange. (b)
Indices of cells. (c) L2 and its coordinate
system. L0 and its coordinate system are
illustrated in orange. is the origin.

As shown in Fig 9, it is possible to choose coordinate systems for L2 aligned
with L0. Similarly, we can choose coordinate systems for L3 aligned with L1. We
can extend this property for further resolutions and pick a coordinate system
for Lr aligned with L0 or L1 depending on if r is even or odd respectively. This
property enables us to establish simple hierarchical relationships.

To establish a hierarchical relationship, we explain the transition from a
parent to its children. To do this, we find the index of the midpoint child of a cell
with index (u, v)r. In fact, this task is equivalent to finding corresponding vectors
of (u, v)r at resolution r + 1. Therefore, we can find the corresponding vectors
of (1, 0)r and (0, 1)r at resolution r + 1 and multiply by u and v respectively.

Assume that r is even, therefore as illustrated in Fig 10 (a), (1, 0)r = (−1, 1)r+1

and (0, 1)r = (1, 1)r+1. Thus, (u, v)r = (v − u, u + v)r+1. For odd, we have
the same relations (Fig 10(b)). Note that for any r, (1, 0)r = (2, 0)r+2 and
(0, 1)r = (0, 2)r+2. Therefore (u, v)r = (2u, 2v)r+2. As a result, we can gener-
alize hierarchical relationships for transitioning from resolution r to resolution
r + k by using Equation 1. (s, t)r+k denotes the index of the midpoint child of
cell (u, v)r after k iterations of refinement.

(s, t)r+k =

{
2k(u, v)r if k is even
2k−1(v − u, u+ v)r if k is odd

(1)

The transition from a fine cell to a coarse cell is simply the reverse of the
process. To apply this indexing method on a cube, we can index each face of
the cube individually and handle the connectivity queries of boundaries using
an edge based method that captures the connection of faces [29]. When a cube
is refined by a dual 1-to-2 refinement, a triangle is formed at each corner. These
triangles are indexed the same as quadrilaterals. The only difference is that
they have three neighbors and three vertex children instead of four in the case
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(1,0)r
(-1,1)r+1

(0,1)r

(1,1)r+1

(0,1)r
(1,1)r+1

(1,0)r

(-1,1)r+1

(a) (b)

(1,0)r

(2,0)r+2
(0,1)r

(0,2)r+2

(c)

Fig. 10. (a) Equality of vectors when r is
even. (b) Equality of vectors when r is odd.
(c) Equality of vectors after two resolutions
and r is even. is the origin.

of quadrilaterals. We can also flatten the polyhedron and index all faces in a
2D domain [21]. This way, triangles and boundary faces are traceable at all
resolutions using hierarchical operations. Both methods are applicable for this
application. We have implemented both and the results are comparable.

3.3 Projection

To form the spherical cells of our digital Earth framework, we use a spherical
equal area projection. An equal area projection is a mapping from a domain Ω
to another domain ∆ while preserving the area. In our employed projection, Ω
and ∆ represent a cube and a unit sphere respectively, where both are centered
at the origin and have the same area (the cube’s edge has length a =

√
2π/3). In

this projection, ∆ is divided into six equal partitions by finding the intersection
of planes z = ±x, z = ±y, and x = ±y with ∆. Fig 11(c) illustrates one partition
of ∆ in black.

T

T-1

F

F-1

(a) (b) (c)

Fig. 11. Steps of the spherical projection.
Points on a face f of Ω (a) are projected
onto a curved square (b) and then projected
onto a partition of the unit sphere ∆ (c).

The main idea of the projection is to map each face f of Ω to a partition
of ∆. To this end, an intermediate domain, called curved square, is used. As
a result the projection has two steps. First f is projected to a curved square
on the tangent plane of ∆, parallel to f , using an equal area bijection called
T . Afterwards, the curved square is mapped to a partition of ∆ using inverse
Lambert Azimuthal equal area projection called F (Fig11). For the detailed
discussion and derivations of mappings, you can refer to [5].

This projection is suggested due to its property of area preservation and its
closed form definitions. One can use a different projection with different proper-
ties (such as conformality) based on application needs. Our proposed refinement
and indexing methods are not dependent on the employed projection.
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4 Results and Discussion

In this Section, we present some results of our framework. We illustrated the
results of applying dual 1-to-2 refinement on the cube in Fig 1. Primal 1-to-2
refinement can also be used for our proposed framework (see Fig 12).

Fig. 12. (a) A cube. (b), (c) Applying pri-
mal 1-to-2 refinement three and four times
respectively. (d) Projection of (c) to the
sphere.

A digital Earth framework should support visualizing raster datasets such as
images (Fig 1). In addition, it should support vector data. Vector datasets are
coordinate-based data models that represent geographic features. Such features
are typically provided as points, lines, and polygons. Fig 13(a) illustrates a vector
dataset representing the boundaries of different countries. In GDGGS, each point
is approximated by a cell enclosing the given point. Therefore, a feature can be
represented by a sequence of cells.

(a) (b)

Fig. 13. (a) Vector data representing
boundary of countries. Germany is high-
lighted in Green. (b) Boundary of Germany
is zoomed. Data is taken from [30] and ren-
dered in our framework.

To see the details of geographic features, data must be represented at differ-
ent resolutions. For example, the boundary of Germany is highlighted in green
in Fig 13 (a). However, as illustrated in Fig 13 (b) many details of this feature
is not visible in the low resolution model. As a result, we need to have a resolu-
tion dependent accuracy. Accuracy, again means minimal error for representing
feature points by cells.

In comparison to other frameworks [31, 28, 17], our framework provides an
efficient representation for features by using the minimal factor of refinement.
Consider that we want to have cells representing the boundary of Germany with
an error less than ≈ 28Km. Fig 14(a) illustrates cells representing the boundary
with an error ≈ 35Km in red. To get the desired accuracy, our framework at the
next resolution can approximate the feature points with 114 cells and an error
≈ 25Km which is good enough for our purpose (Fig 14(b)). However, if we use
a 1-to-4 refinement (Fig 14(c)), although we have satisfied the required accuracy
(error less than ≈ 28Km), we need to save and render 162 cells (48 more cells
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than 114.) As a result, using 1-to-2 refinement, we can save 42% of the cells for
representing the boundary of Germany as an example of a geographic feature.

(a) (b) (c)

Fig. 14. Cells representing the boundary
of germany with errors (a) ≈ 35Km, (b)
≈ 25Km, and (c) ≈ 17.5Km

5 Conclusion and Future Work

In this paper, we have introduced a new Digital Earth framework modeled by a
Geodesic Discrete Global Grid System. This framework uses a cube as its base
polyhedron. We use two types of 1-to-2 refinement, which is the minimum factor
of refinement. These refinements are used to create cells to discretize the cube’s
surface. To project such cells, we suggest a projection with closed forms, both
for projection and its inverse. We also provide two types of indexing methods to
handle hierarchical and neighborhood finding operations.

This framework can be used as the base of many other applications aiming to
visualize location based information. Therefore, in this aspect, there are many
directions for enhancing the features of the framework. However, there are two
future works relevant to the framework’s structure. The spherical projection
that we are using should be compared with other alternatives such as Snyder
projection in terms of time to report the exact difference. Moreover, the angular
distortion of the used projection should be calculated and compared with other
projections and polyhedrons.
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