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Figure 1: The atlas of connectivity maps for the Teddy’s belly.

ABSTRACT

Semiregular models are an important subset of models in computer
graphics. They are typically obtained by applying repetitive regular
refinements on an initial arbitrary model. As a result, their connec-
tivity strongly resembles regularity due to these refinement opera-
tions. Although data structures exist for regular or irregular models,
a data structure designed to take advantage of this semiregularity is
desirable. In this paper, we introduce such a data structure called
atlas of connectivity maps for semiregular models resulting from
arbitrary refinements. This atlas maps the connectivity information
of vertices and faces on separate 2D domains called connectivity
maps. The connectivity information between adjacent connectivity
maps is determined by a linear transformation between their 2D do-
mains. We also demonstrate the effectiveness of our data structure
on subdivision and multiresolution applications.

Index Terms: I.3.6 [COMPUTER GRAPHICS]: Methodology
and Techniques—Graphics data structures and data types; I.3.5
[COMPUTER GRAPHICS]: Computational Geometry and Object
Modeling—Hierarchy and geometric transformations

1 INTRODUCTION

Semiregular models are very important in computer graphics [4].
They are typically obtained by applying repetitive regular refine-
ment on an initial arbitrary model. After applying regular refine-
ments, most of the vertices are regular and the number of extra-
ordinary vertices does not increase through the resolutions. In such
models, the geometry of vertices might be modified by an averag-
ing step, projection, or any type of vertex modification. However,
there remains a strong notion of regular connectivity, featuring hi-
erarchical relationships among the vertices at various resolutions.

Due to these important characteristics of semiregular models,
they have appeared in several applications in computer graphics.
Subdivision models are semiregular models created by a specific
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type of refinement (which changes the connectivity) and smoothing
masks (which change the geometry) applied to an arbitrary initial
model. Multiresolution models may also be classified as semireg-
ular, if semiregularity (i.e., subdivision connectivity) is preserved
when obtaining the low resolution model.

To take advantage of the characteristics of semiregular models
(especially models with a large number of vertices and faces), a
general and well designed data structure for this type of models is
needed. Such a data structure must support adjacency and hierar-
chical queries in an efficient manner. Current data structures are
mostly designed for either an irregular connectivity [25] or a com-
pletely regular model [1].

In this paper, we introduce a data structure that maps the con-
nectivity of semiregular models onto a set of quadrilateral 2D do-
mains that captures the connectivity of regular patches in semiregu-
lar models obtained from an arbitrary refinement. The connections
between vertices and faces are captured by these 2D domains and
their interconnections. We call this structure an atlas of connec-
tivity maps (ACM) as illustrated in Fig 1. To map the connectiv-
ity of semiregular models, we use the connectivity of the initial
mesh to form an atlas of connectivity maps (2D domains) in which
their connections are captured. A coordinate system is assigned
to each connectivity map such that each vertex has integer coordi-
nates. These integer coordinates are used to index faces and ver-
tices. Having such a coordinate system, the neighbors of a vertex
can be determined using simple neighborhood vectors in constant
time. To establish the hierarchical relationships of faces between
resolutions, we use a transformation (rotation, translation, and scal-
ing) between coordinate systems of two resolutions. We use a 2D
array for recording the 3D locations of vertices associated with each
connectivity map. The coordinate of each vertex in the connectivity
map is used to obtain its index in this location array.

The proposed ACM provides efficient and general adjacency and
hierarchical operations for semiregular models resulting from var-
ious types of refinements. We categorize regular refinements for
quad meshes, and for each category, we propose methods to han-
dle adjacency and hierarchical queries using our data structure. We
then discuss how to support triangle meshes. The geometry of the
semiregular models in our method can be provided through differ-
ent sources. We discuss the possibility of supporting subdivision
and multiresolution (reverse subdivision) as an application of re-



finement methods. We then compare the performance of ACM with
two edge-based data structures supporting subdivision and mul-
tiresolution.

2 RELATED WORK

Data structures for semiregular models can be found primarily in
literature related to subdivision and multiresolution. We present
work related to our proposed method as divided into two categories:
subdivision and multiresolution.

Subdivision: Subdivision is a well-studied subject in computer
graphics. There are many subdivision schemes, such as Loop,
Catmull-Clark, Doo-Sabin,

√
2 and

√
3 subdivision [12, 6, 7, 11, 9].

Subdivision is typically a two-step process: one step of refinement
followed by an averaging step. The relationship between lattices
at different resolutions resulting from different types of refinement
has been previously classified in [1, 8]. Our categorization of re-
finements is similar to their work. However, we have classified
subdivision to assist in designing an efficient data structure to ad-
dress connectivity queries on an arbitrary connectivity model.

The half-edge data structure and its variations are commonly
used to model subdivision surfaces [25]. These data structures are
designed for general topological objects’ adjacency queries. How-
ever, the half-edge data structure cannot be directly used for hierar-
chical access. Furthermore, it does not benefit from the regularity
of subdivision and therefore, for objects with a large number of ver-
tices, it becomes inefficient.

An alternative data structure that supports hierarchical opera-
tions is the quadtree [20]. Quadtrees are commonly used for hi-
erarchical meshes, particularly for hierarchical editing applications
[26]. Although quadtrees are quite effective at supporting hierarchy
between resolutions, they need to store many pointers to maintain
their nodes’ connectivities and hierarchical dependencies. To over-
come this inefficiency, indexing methods exist assigning a unique
index to every node to discard the tree structure [20]. However,
these indexing methods are mostly designed to support hierarchy
and ignore the adjacency relationships. Moreover, since quadtrees
are designed to support 1-to-4 refinement, they cannot be directly
used to support other refinements.

Patch-based refinement methods rely on data structures that are
specifically designed for subdivision methods [5, 21, 22, 13]. In
these methods, meshes are divided into some patches and subdivi-
sion is separately applied to each patch. Each patch is stored in an
array and connectivity between the patches’ boundaries is handled
using repetitive points at the boundary edges or a first resolution
edge based data structure. These methods are mostly designed for
a specific type of refinement or shapes [5, 13]. Some of these data
structures use spiral 1D indexing for vertices [21, 22]. Spiral index-
ing complicates neighborhood access, specially for non-immediate
neighbors that are essential for applications like multiresolution.
We instead use simple 2D domains to maintain connectivity infor-
mation for extending patch-based methods to support all types of
refinements.

Multiresolution: While subdivision generates high resolution
objects, multiresolution provides a means to transition from high to
low resolution and vice versa [23]. Among multiresolution frame-
works, some maintain the semiregularity of objects. This can be
achieved by reversing the process of subdivision (i.e. reverse subdi-
vision process) [16, 17, 2] or by considering a property of the coarse
vertices like smoothness via the Laplacian [26]. Since both the
Laplacian and reverse subdivision use local operators to coarsely
sample the fine model, our proposed method can handle these op-
erations.

Olsen et al. [16, 17] use the concept of even/odd vertices to
distinguish between details and coarse vertices and provide a com-
pact multiresolution framework. To provide a data structure for this
idea, they use an edge based data structure to handle connectivity

queries and a hashing method to map vertices to details or coarse
vertices [15]. To show that our ACM can efficiently support mul-
tiresolution frameworks, we describe how to support the compact
multiresolution proposed in [16, 17] and compare the speed of our
data structure with [15].

To adapt the half-edge to multiresolution frameworks, Kraemer
et al. [10] modify this data structure by defining sequences of half-
edges. Using this multiresolution half-edge structure, it is possible
to support primal and dual schemes. However, this data structure
needs a large amount of memory for high resolution models due to
the storing of all edges. It also needs extensive amount of time to
maintain its structure after the refinement. By comparison, in our
method, which benefits from the regularity of subdivision models,
a significant amount of memory and time is saved.

3 ATLAS OF CONNECTIVITY MAPS AND ITS REFINEMENT

Semiregular models are obtained by refining an arbitrary coarse
mesh. As a result, irregularity in semiregular models is limited to
that introduced by the coarse model. To capture the connectivity in-
formation of the entire mesh, we position the initial connectivity in
such a way that all connectivity queries can be executed using sim-
ple algebraic operations. This initialization is performed in such
a way that the geometry of vertices is also easily accessible. Af-
terwards, the effect of all types of refinement on the initial mesh
is analyzed. This leads to a refinement categorization that we de-
scribe in Section 4. In this section, we introduce the notations that
we use in the entire paper. We also describe how to set up the atlas
of connectivity maps and maintain it after applying refinements.

3.1 Connectivity Maps
Connectivity maps are 2D domains that locally capture the connec-
tivity of a general mesh. We first describe how to establish con-
nectivity maps for a quad mesh and then generalize it for triangles.
Consider a quad mesh with M quads qi, i = 0, ...,M−1 (Fig 2(a)).
Each quad qi has four vertices that can be labeled by an arbitrary
cyclic ordering pi

j, j = 0, ...,3 (Fig 2(b)). In this ordering, pi
j and

pi
j+1 are neighbors (pi

3 is adjacent to pi
0). We map qi to a unit 2D

square Qi by mapping pi
0 to (0,0), pi

1 to (1,0), pi
2 to (1,1), and

pi
3 to (0,1). Having these 2D coordinates for each Qi, we establish

a coordinate system for Qi as illustrated in Fig 2(c). We refer to
this as connectivity map (CM) coordinate system. Qi is called the
connectivity map of qi and is denoted by Qi = CM(qi). Any point
in Qi has a coordinate based on the CM coordinate system of Qi.
We call these CM coordinates. Qi and its CM coordinates are used
to handle connectivity queries of vertices throughout the refinement
process.
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Figure 2: (a) A quad mesh with M quads. (b) qi is a quad in 3D. (c)
qi is mapped to its connectivity map Qi and a coordinate system is
defined for Qi.

To access to the connectivity information of the entire mesh, in-
formation on the connections between connectivity maps is needed.
Since meshes are 2-manifold, qi and its neighbors can be unfolded
on a 2D neighborhood pattern (see Fig 3). The neighbors of qi are
denoted by qiα , α = 0, ...,3. In this neighborhood pattern, qi can



be mapped to its connectivity map Qi and qiα corresponds to a unit
square adjacent to Qi. In fact, qiα is mapped to a unit square Siα
adjacent to the edge of Qi connecting pi

α to pi
α+1. Note that Siα

is not exactly the connectivity map of qiα (Qiα ) since it is in the
CM coordinate system of Qi. However, a simple coordinate trans-
formation Tiα can be used to map CM coordinates in Siα to CM
coordinates in Qiα .
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Figure 3: (a) qi and its neighbors (qiα ) on a 3D mesh are highlighted.
(b) Zoomed qi and qiα . (c) Ordering and orientation of points in qi
and qiα . (d) Siα and CM coordinates systems of Qi and Qiα in the
neighborhood pattern.

The CM coordinate systems of Qiα can be assigned to this neigh-
borhood pattern. We can take piα

0 as the origin and the edges con-
necting piα

0 to piα
1 and piα

0 to piα
3 to be the i and j axes of the

coordinate system. To determine the coordinate system of Qiα in
this pattern, we find the vertex in Qiα equivalent to pi

α . Knowing
the position of one vertex of Qiα is enough to find its coordinate
system since the orientation of faces is the same. For example, if
pi

0 is equivalent to pi0
3 (Fig 3(c)), the coordinate system shown in

the bottom quad in Fig 3(d) is defined for Qi0. Tiα is the transfor-
mation mapping CM coordinate system of Qi to the CM coordinate
system of Qiα in the neighborhood pattern. Tiα are stored as a part
of our data structure.

In later discussions, the neighborhood pattern and transforma-
tions are used to handle connectivity queries that need the infor-
mation of two adjacent connectivity maps. An example of such a
query is finding the neighbors of vertices located at the boundary
edges of Qi.

3.2 Refining Connectivity Maps

We explained how to set up the initial connectivity information of
a general mesh. This initial connectivity information may be used
to handle connectivity queries of the mesh after applying refine-
ments. When a refinement is applied to qi with a set of vertices
V , set V1 is generated. The CM coordinates of V1 in Qi are found
by applying refinement on the CM coordinates of V . For instance,
Fig 4(b) illustrates the CM coordinates of V and V1 after applying
1-to-4 refinement. In order to distinguish the CM coordinates be-
fore and after refinement, we use a subscript indicating the level of
refinement or resolution. We also use Qi as a superscript for (a,b)r
indicating the connectivity map in which (a,b)r is located. As a re-
sult, (a,b)Qi

r refers to vertex (a,b) in the CM coordinate system of
Qi at resolution r. We may drop Qi if it is clear which connectivity
map (a,b)r belongs to.

CM coordinates are used as references to the 3D locations of the
vertices. In regular refinements (i.e., linear subdivision), the 3D
location of vertices can be found by a simple mapping, such as a
barycentric mapping from vertices of Qi to qi. However, in appli-
cations that 3D location of vertices are changed by an additional
operation, such as the smoothing masks of subdivision schemes,
the 3D locations of each vertex is stored. A natural choice for stor-
ing the geometry is to use a 2D location array containing 3D points
(x,y,z). To obtain indices referring to the location array from the
CM coordinates, it is best if vertices have integer coordinates in
Qi. Using a transformation, a coordinate system aligned with Qi is

introduced for V1 in which all vertices receive integer coordinates
(see Fig 4(c)). The transformation that maps non-integer CM co-
ordinates to integer coordinates is called Tint . We call the resulting
integer coordinates CM index.
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Figure 4: and form the set V and V1 in Qi. (a) Initial connectivity
map Qi. (b) Applying refinement on the CM coordinates of Qi. (c)
Ti is used to avoid non-integer coordinates. (d) Red and black lat-
tices are the connectivity lattices before and after 1-to-4 refinement
respectively.

To identify the properties of refinements, the concept of lattices
can be used. When a refinement is applied to a lattice represent-
ing the connectivity of vertices (connectivity lattices), a transfor-
mation Tre f is imposed to this connectivity lattice [1, 8]. We can
also use connectivity lattices for each connectivity map resulting
from refinements, since after refinement, each connectivity map can
be considered as a bounded lattice. Tre f maps connectivity lattices
between resolutions. For example, in 1-to-4 refinement, Tre f is a
scaling by 1

2 . As illustrated in Fig 4(d), scaling the red lattice by 1
2

aligns the red lattice and black lattices representing the connectiv-
ity of vertices at two successive resolutions. Refinements introduce
different Tre f . Therefore, we categorize refinements based on Tre f
in Section 4 and suggest transformation Tint for each category to
show how Tre f and Tint are used to determine the connectivity of
vertices.

It is possible to establish a hierarchical relationship among faces
and vertices. This relationship can be used in applications such as
multiresolution and mesh editing since we can find the index of a
face or vertex after applying refinements. To this end, we need to
find the index of a face or vertex at the next resolutions and estab-
lish an algebraic hierarchical relationship. For example, in 1-to-4
refinement, a vertex with index (a,b)r has index (2na,2nb)r+n after
n levels of refinement. We can therefore deduce that a face with in-
dex [a,b]r covers faces with index [c,d]r+n at resolution n in which
2na≤ c < 2n(a+1) and 2nb≤ d < 2n(b+1). In Fig 1, faces cov-
ered with the same coarse face are in the same color. We use the
same manner of coloring for patches resulting from the same coarse
face in the entire paper.

3.3 Neighborhood Vectors
To access the neighbors of a vertex in Qi, we define a set of neigh-
borhood vectors. Neighborhood vectors are added to the CM in-
dex of a vertex, from which the CM indices of its neighbors are
obtained. The neighborhood vectors for a regular point in Qi are
simply (1,0), (−1,0), (0,1) and (0,−1).

To handle connectivity queries after refinement, it is necessary
to consider the effect of refinement on the neighborhood vectors.
Since refinements change the connectivity of vertices, neighbor-
hood vectors are also affected by the imposed transformation Tre f .
We also manipulate coordinate systems with Tint to get integer co-
ordinates. As a result, neighborhood vectors are transformed by the
combination of two transformations Tre f and Tint (Tre f oTint ). For
example, in 1-to-4 refinement, Tre f = scale( 1

2 ) and Tint = scale(2).
As a result, Tre f oTint = I, so neighborhood vectors are identical af-
ter 1-to-4 refinement (Fig 5).

If vertex (a,b)Qi
r is an internal vertex in Qi (i.e., the vertex and

its neighbors are in Qi), they are in the same coordinate system
and adding neighborhood vectors to (a,b)r results CM index of its



neighbors. However, if the neighbor of vertex (a,b)Qi
r falls out of

Qi in Siα , its CM index in Qiα must be determined. Since the co-
ordinate systems of Qi and Qiα are different, we use (Tiα ) to find
the CM index of the neighbor of (a,b)Qi

r which falls in Qiα in the
neighborhood pattern. To this end, we add the neighborhood vector
to (a,b)r and get (c,d)r and then apply Tiα on (c,d)r to obtain the
CM index of this vertex in Qiα . Fig 5 illustrates this situation .
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Figure 5: Left: Identity transformation of neighborhood vectors at two
successive resolutions. Middle: Transformation Ti1 maps coordinate
system of Qi to Qi1’s. lr is the number of vertices along one i or
j axis at resolution r. Vector w = (1,0) is added to (a,b)r = (2,1)1.
(c,d)r = (3,1)1 is in Si1. Right: (c,d)r is transformed by Ti1 and the
result is (1,1)1 in Qi1.

3.4 Forming Faces
In our method, the connectivity of faces is implicit and determined
using vertex connectivities. Face [a,b]Qi

r is associated with vertex
(a,b)Qi

r . Having (a,b)Qi
r , all vertices making up [a,b]Qi

r are obtained
by adding some vectors. For example, in 1-to-4 refinement, (a,b)Qi

r

is the left-bottom corner of [a,b]Qi
r in CM coordinate system of Qi.

As a result, other vertices forming [a,b]Qi
r are found by adding vec-

tors (1,0)r, (1,1)r, and (0,1)r to (a,b)Qi
r . For each category of

refinement, we discuss the vertex associated with face [a,b]Qi
r and

the vectors that are necessary to form faces.

3.5 Data Structure Elements
So far, we have discussed the required elements to handle connec-
tivity queries. Here, we explicitly discuss how to store these ele-
ments for our proposed data structure. For storing the connectivity
information of a mesh, we use an array of connectivity maps called
Q List. Each entry of Q List (Q List[i]) corresponds to a Qi. A
global integer called res is also stored for the entire mesh that refers
to the resolution or level of refinement of the mesh. The resolution
of the mesh helps to determine the range of vertex indices in Qi.
For example, in 1-to-4 refinement, the CM indices (a,b)r are in the
range 0≤ a,b≤ 2r.

Each connectivity map Qi has structures to store the 3D locations
of vertices and its neighborhood pattern (see Fig 6(a)). Qi has a 2D
location array of 3D points (x,y,z) called vertices storing locations
of its vertices. To access neighbors, each Qi has also an integer ar-
ray called neighbors that keeps the indices of the Qiα in Q List. For
each Qiα , a Tiα is also stored in an array called trans f ormation. To
have an easier representation for transformations, we encode possi-
ble Tiα by integers(see Fig 6(b)).

Q

{  

   Point        array [][] vertices; 

   Int        neighbors [4]; 

   Int        transformations[4];  

   List<int> array [4] corner_neighbors; 

}
(a)
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Figure 6: (a) Elements that are used for each connectivity map. (b)
Encoding of transformations. (c) Neighbors of pi

0. Duplicate vertices
are illustrated in the same color.

The connectivity of corners must also be determined. Irregular
vertices in semiregular meshes are only found at the corners of the
connectivity maps. These vertices are shared by multiple connec-
tivity maps. Therefore, to access the neighbors of a corner, we find
its neighbors in each connectivity map and discard duplicates that
are shared at the boundary edges of (Fig 6(b)).

Formally, to access the neighbors of corners pi
α with valence ω ,

we store connectivity maps Qsν (ν = 1, ...,ω − 1) having a vertex
psν

n , n = 0, ...,3, equivalent to pi
α . The neighbors of each psν

n (for
any ν) are combined with the neighbors of pi

α and duplicates are
discarded. Figure 6(c) illustrates this scenario for pi

0. The indices of
Qsν in Q List are stored in corner neighbors, which is a 4-element
array of lists with length of ω−1.

Storing corner neighbors is primarily an implementation deci-
sion since the neighbors of a corner can be found using Qiα and
their adjacent connectivity maps. However, having direct access to
the neighbors of the corners speeds up the process. Furthermore,
since this information is constant throughout the resolutions, it is
not expensive to store additional information for the initial mesh to
simplify operations. Note that our suggested data structure set up is
not unique and other possible initial set ups might work efficiently.
As a result, one may change the elements of the data structure based
on their own application.

4 REFINEMENT CATEGORIZATION

As discussed in Section 3.2, refinements impose transformations
(Tre f ) on the coordinate systems of the connectivity maps. Tre f may
include a rotation, scaling, and translation. Based on the type of
Tre f , we categorize refinements and analyze their effects on neigh-
borhood vectors, CM indices, boundaries of the connectivity maps,
and the form of faces.

4.1 Scaling, No rotation, No Translation
Refinements that do not induce any rotation or translation in the
next resolution are very common and appear in popular subdivision
schemes such as Catmull-Clark [6]. For instance, 1-to-4 refine-
ment creates aligned lattices at two successive resolutions scaled
by 1

2 (see Fig 4 for the refinement and Fig 7(b) for subdivision).
Therefore, as discussed earlier, Tre f = scale( 1

2 ). To avoid non-
integer indices for vertices, the CM coordinates are transformed
by Tint = scale(2). Tre f oTint = I, therefore neighborhood vectors
are not changed through the resolutions (see Fig 5). Based on Tint ,
the length of the 2D location array (vertices) is determined. In a
1-to-4 refinement, the location array is of size (2r +1)× (2r +1) at
resolution r.

Figure 7: (a) Initial mesh. The result of different subdivision schemes
are illustrated in (b) Catmull-Clark (c)

√
2 (d) Doo-Sabin (e) Simplest.

Orange/pink faces are shared faces at boundaries/corners.

Transformation Tint is generalized by T r
int = scale(2r) for reso-

lution r. These relations are also generalized to any 1-to-m2 refine-
ment via scaling by mr. Another instance of 1-to-m2 refinement is
ternary subdivision in which m = 3 [14]. Note that since the coordi-
nate systems of two resolutions are aligned, Tre f is always a scaling
by 1

m and the location array is (mr + 1)× (mr + 1) at resolution r.



In 1-to-m2 refinements, vertex (a,b)r has index (mna,mnb)r+n after
n level of refinements. A face with index [a,b]r also covers faces
with index [c,d]r+n at resolution n in which mna ≤ c < mn(a+ 1)
and mnb≤ d < mn(b+1).

4.2 Scaling, Rotation, No Translation
Some refinements impose a rotation in connectivity lattices at two
successive resolutions. 1-to-2 refinement used by

√
2 subdivision,

is one instance of such a refinement (Fig 7(c)) [11]. In 1-to-2 refine-
ment, a vertex is inserted at the midpoint of each quad. Afterwards,
the edges of the quads are removed and the midpoints are connected
to the vertices of the quads (Fig 8).

(a) (b) (c) (d) (e)

Figure 8: 1-to-2 refinement: (a) Four adjacent quads (b) Inserting
Face vertices. (c) Changing the connectivity (d),(e) Lattices at two
successive resolutions and their coordinate systems. The red and
black lattices are, respectively, the connectivity lattice at even and
odd resolutions.

As apparent in Fig 8(d), a rotation by π

4 and scaling by 1√
2

aligns
lattices at two successive resolutions, therefore we can deduce that
Tre f = scale( 1√

2
)rot( π

4 ). The red lattice in Fig 8(d) is the connec-
tivity lattice of even resolutions. Tre f maps connectivity lattices of
even resolutions to odd ones. However, two applications of 1-to-
2 refinement cancels out the rotation and aligns the connectivity
maps with the even resolutions scaled by 1

2 (Fig 8(e)). Therefore,
we can deduce that T́re f = scale( 1√

2
)rot(−π

4 ) maps the connectivity
lattices of odd resolutions to even ones.

(a) (c) (d)

(0.5,0.5)1 (1,1)1

(b)

Refine
RefineScale

No Scale

Figure 9: (a) Initial connectivity map. (b) 1-to-2 refinement makes
non-integer coordinates. (c) Scaling to avoid non-integer coordi-
nates. (d) Connectivity map at resolution two. No transformation
is needed. and : vertex and face vertices, : empty CM indices.

Applying 1-to-2 refinement on Qi results in vertices with non-
integer CM coordinates at the midpoints of quads in Qi at odd res-
olutions (Fig 9). To obtain integer CM indices, we scale the CM
coordinates by two (Tint = scale(2)). This results in some empty
CM indices with no associated vertex at odd resolutions (Fig 9(c)).
These integer CM indices are used for the new vertices at the next
resolutions, therefore no transformation is needed for obtaining the
CM indices from even to odd resolutions; T́int = I (see Fig 9(d)).

Transformations that map the neighborhood vectors at resolu-
tion r are again found by composing Tre f and Tint . The transfor-
mation mapping neighborhood vectors of even resolutions to odd
resolutions is called Te→o and is found by composing Tre f and
Tint . As a result, Te→o = Tre f oTint = scale(

√
2)rot( π

4 ). Similarly,
To→e = T́re f oT́int = scale( 1√

2
)rot(−π

4 ). Therefore, we can deduce

that Te→o : (i, j)→ (2i− j, i+ j), To→e : (i, j)→= 1
2 (i+ j, j− i),

and Te→ooTe→o = I. Fig 10(a) illustrates the neighborhood vectors
at even and odd resolutions and transformations Te→o and To→e.

Faces at even resolutions are associated with a vertex at their
bottom-left corner and formed by vectors (1,0), (1,1), and (0,1)

Te->o

(1,0)r

(0,-1)r

(-1,0)r

(0,1)r

(1,0)r+2

(0,-1)r+2

(-1,0)r+2
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(-1,1)r+1
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To->e

[a,b]r

(a,b)r

(b)(a)

Qi

(c)

Qi1

Figure 10: (a) Transformations of neighborhood vectors. (b) Essen-
tial vectors for forming a face. (c) Orange shared faces between two
neighborhood vectors.

(see Section 4.1). However, faces at odd resolutions are associated
with a vertex located at their midpoint and formed by vectors illus-
trated in Fig 10(b). Note that some faces are shared by two adjacent
connectivity maps Qi and Qiα (Fig 10(c)). To avoid redundancy,
these faces are considered to belong to Qi if i < iα . Shared faces
are highlighted in orange in Figures 10(c) and 7(c). Since two steps
of this refinement is the same as a 1-to-4 refinement, hierarchical
relationships are similar to ones discussed in Section 4.2.

4.3 Scaling, No rotation, Translation
A translation might be imposed by a refinement to the connec-
tivity lattices. One example is the 1-to-4 refinement used by the
Doo-Sabin subdivision scheme [7] (Fig 7 (d)). For this scheme,
Tre f : (i, j) → 1

2 (i +
1
2 , j + 1

2 ) is the transformation imposed by
the refinement (Fig 11 (d)). To get integer CM coordinates, we
can use Tint : (i, j)→ 2(i− 1

2 , j− 1
2 ). In general, at resolution r,

T r
re f : (i, j)→ 1

2r (i + 1
2 , j + 1

2 ) and T r
int : (i, j)→ 2r(i− 1

2 , j− 1
2 )

and Tre f oTint = I. Therefore, neighborhood vectors are the same
throughout the resolutions. The neighborhood vectors are the same
as those for 1-to-4 refinement without translations (Fig 5) and the
location array has length 2r×2r (r > 0). Since old vertices are re-
moved and new vertices are inserted in this refinement, hierarchical
relationships are established based on faces instead of vertices. A
face with index [a,b]r (r > 0) covers faces with index [c,d]r+n in
which 0≤ c,d ≤ 2n.
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(1,1)0(0,1)0
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2 )by

(a) (b) (d)

Scale by 2

(c)
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1

3
4( , 1

4 )
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3
4( , 3
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1

1
4( , 3
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1

Translate

(0,0)1 (1,0)1

(1,1)1(0,1)1

Figure 11: (a) CM(Q) (b) : vertices obtained by refinement and
lying in CM(Q). Orange faces are shared by two connectivity maps.
Pink faces are corner faces. (c) Applied scaling and translation to get
integer CM indices. (d) Lattices of two successive resolutions.

For the internal vertices (a,b)r, 0 < a,b < 2r−1, adding neigh-
borhood vectors to the CM indices results in the CM index of the
neighbors (Fig 12(a)). However, for vertices whose neighbors fall
in an adjacent connectivity map Qiα , we need to use the neighbor-
hood pattern (Section 3.1). The connectivity of vertices is manipu-
lated by a translation via Tint in Qi. To access external neighbors,
the CM indices are translated back by ( 1

2 ,
1
2 ), neighborhood vectors

are added and then they are translated by (−1
2 , −1

2 ) in CM coordi-
nate system of Qiα . Fig 12(b) illustrates such a scenario for vertex
(3,2)Qi

2 whose neighbors fall in Qi1.
The face indices are the same as those discussed in Section 3.4.

Some shared faces again exist between connectivity maps Qi and
Qiα that belong to Qi if i < iα . Corner faces require special treat-
ments. Faces at corner Pi

α with valence ω have ω number of ver-
tices. Each of these vertices is located in Qsν adjacent to Pi

α as dis-
cussed in Section 3.5. If Pi

α is equivalent to Psν
0 , Psν

1 , Psν
2 , or Psν

3 ,
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Figure 12: is the neighbor of . (a) Neighborhood vectors for inter-
nal neighbors added to CM indices. (b) CM indices are translated by
( 1

2 ,
1
2 )r in Qi, neighborhood vectors are added and they are translated

by ( 1
2 ,

1
2 )r in Qi1. (c) Orange faces are shared by two connectivity

maps. The pink face is a face at the corner.

the corner face has a vertex in Qsν with index (0,0)r, (2r− 1,0)r,
(2r−1,2r−1)r, or (0,2r−1)r respectively. Fig 12(c) illustrates an
example of shared faces and a corner face.

4.4 Scaling, Rotation, Translation

If a refinement imposes both rotation and translation, we can com-
bine the discussed methods to handle the connectivity queries. One
instance of such a refinement is the 1-to-2 refinement used by the
simplest subdivision (Fig 7(e))[18].

(a) (b) (c) (d)

Figure 13: Simplest’s refinement: (a) Four adjacent quads. (b) Insert-
ing vertices in the midpoint of edges. (c) Connecting the midpoints.
(d) Removing previous vertices and edges.

In this refinement, one vertex is inserted at the midpoint of each
edge, midpoints are connected to each other and the previous sets
of vertices and edges are removed (see Fig 13). Odd resolutions for
this refinement are handled similarly to 1-to-2 refinement (Section
4.2), except a different set of empty CM indices. Even resolutions,
by contrast, are dealt with in the exact same way as with Doo-Sabin
(Section 4.3). Hierarchical relationships and forming faces are also
similar to the case discussed in Section 4.3.

Note that once we know the effect of each refinement on the con-
nectivity map, we can combine different refinements on the connec-
tivity maps. Fig 14 illustrates the effect of various subdivisions on a
model. This is an advantage of our work that does not exist in other
patch-based methods.

Figure 14: From left to right: initial mesh, Doo-Sabin, Catmull-Clark,
and
√

2 subdivision.

5 CONNECTIVITY MAPS FOR TRIANGLES

So far, we have discussed how to set up the atlas of connectivity
maps for handling connectivity queries of quadrilateral semiregular
models. In the following section, we describe how to modify the
method to support triangular meshes.

5.1 Triangles
As with quad meshes, for triangle meshes it is desirable to have a
quadrilateral domain for the connectivity map, since the 3D loca-
tions of vertices are stored in a 2D array. In order to create such
a domain, we can pair adjacent triangles to form a quad, creating
a single connectivity map. Suppose that we have a set of faces
F = { f1, f2, ..., fM}, we can pair fi with f j if fi and f j are adjacent.
Afterwards, both fi and f j are removed from F and the process
repeats until no adjacent faces exist in F . A complete pairing of tri-
angles is possible and is computable in O(Mlog4M) where M is the
number of triangles [19, 3]. Triangles in F that remain unassigned
to a pair (isolated triangles) may each be assigned to a half-empty
connectivity map. As a result, having isolated triangles is not fatal
(Fig 17). However, for efficiency it is better to reduce the number
of isolated triangles by using methods that can make a pure quad
mesh from a given triangular one [3, 24].
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(0,0)2 (4,0)2

(4,4)2(0,4)2

Figure 15: (a) Coordinate system for triangular connectivity maps. (b)
Neighborhood vectors for triangles. (c) Form of triangular faces. (d)
Applying two steps of 1-to-4 refinement on a triangular connectivity
map.

For consistency, the coordinate system of the connectivity maps
is restricted so that the diagonal connects (0,0)0 to (1,1)0. To han-
dle connectivity queries, a new set of neighborhood vectors is used
(Fig 15.(b)). Since two triangles are assigned to one connectivity
map, each [a,b]Qi

r refers to two faces T0 and T1 which can be con-
structed using vectors illustrated in Fig 15(c).

(3,0)2

(3,3)2(0,3)2

(1,2)1

(2,1)1

(a)
(0,0)0 (1,0)0

(1,1)0(0,1)0

(0,0)1

(0,3)1

(3,0)1

(3,3)1

(b)
(0,0)2

(c)

(1,0)r

(0,-1)r

(-1,0)r

(0,1)r (1,1)r

(-1,-1)r

Te->o To->e

(1,0)r+2

(0,-1)r+2

(-1,0)r+2

(0,1)r+2 (1,1)r+2

(-1,-1)r+2

(1,-1)r+1

(2,1)r+1

(1,2)r+1

(-1,1)r+1

(-2,-1)r+1

(-1,-2)r+1

(d)

Figure 16: (a),(b) and (c) Connectivity maps at resolutions zero to
2. ( and : face and vertex vertices.) (d) Neighborhood vectors at
even and odd resolutions and their transformations.

Refinements on triangular connectivity maps are also very simi-
lar to the quadrilateral cases. For instance, applying 1-to-4 refine-
ment on a triangular connectivity map leads to the scaling of the
connectivity map by two (Fig 15(d)). Another example of refine-
ment for triangular meshes is 1-to-3 refinement used by

√
3 subdivi-

sion. In this refinement, the midpoint of each triangle (face-vertex)
is inserted and the connectivity is changed, as illustrated in Fig 16.
Therefore, connectivity lattices are transformed by a π

6 rotation and√
3 scaling. Similar to Section 4.2, to get integer CM indices, we

scale the CM coordinates by three (Tint = scale(3)) from even to
odd resolutions and no scaling is applied from odd to even resolu-
tions (T́int = I).

Neighborhood vectors for 1-to-3 refinement, are illustrated in
Fig 16(d) for even and odd resolutions. The transformations map-
ping neighborhood vectors are Te→o : (i, j) → (2i− j, i + j) and
To→e : (i, j)→ 1

3 (i+ j,2 j− i). Figure 17 illustrates applying
√

3
subdivision on a pawn. To form faces, similar to Section 4.2, faces
at odd resolutions are associated with the index of their midpoint
and shared faces between Qi and Qiα are created in Qi if i < iα



Figure 17: Applying
√

3 subdivision on the pawn model. Bottom:
zoomed screen shots of the head of the pawn. The isolated triangle
is shown in orange. The pink portion indicates the region formed
by subdividing the isolated triangle. Triangle pairs are shown with
different colors in (a) and (e).
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(0,0)1 (3,0)1
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[2,2]1

(a) (b)

[3,1]1

[3,2]1
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Figure 18: (a) Forming faces at an odd resolution for T0 and T1. (b)
Orange faces at the boundaries that are shared with a neighbor. (c)
Two adjacent connectivity maps with different connectivity patterns.
(d) Neighborhood vectors for boundary edges at two connectivity
maps with different connectivity patterns.

(see Fig 18(a) and (b)). Note that it is possible that Qi and Qiα
have different connectivity patterns (Fig 18(c)). To handle adja-
cency queries at the boundaries, different neighborhood vectors il-
lustrated in Fig 18 (d) are used in these cases.

6 APPLICATIONS AND COMPARISONS

As a first application, we perform fast subdivision on surfaces. We
compare the run time needed to reach resolution i+ 1 from reso-
lution i using the half-edge structure with our approach and show
that ACM is much faster. Furthermore, we show how connectivity
maps are useful for handling adjacency and hierarchical queries in
multiresolution frameworks.

6.1 Subdivision

ACM provides simple adjacency operations using neighborhood
vectors running in O(1). Due to their simple structure, they are
also more efficient at supporting applications (such as subdivision)
than other common edge-based data structures. For example, in 1-
to-4 refinement the half-edge structure needs to manipulate at least
16 pointers per face. However, in ACM no pointer manipulation
is needed and scaling the length of 2D location array is enough
to increase the resolution. To quantify the difference between the
speed of ACM and half-edge, we compare the run-time (CPU) of
the ACM with the half-edge data structure for subdividing the Pawn
using

√
3 subdivision in Table 1. It is apparent that the connectivity

maps are much faster than edge-based data structures. ACM is very
fast for even very large meshes. To subdivide a pawn at resolution
nine with 1994544 faces, ACM needs less than a second (0.987).
Our implementation was coded in the C#.Net framework on an In-
tel i7 quad core processor under Windows 7. We also compare the
space complexity of the ACM with a simple data structure with low
space usage (face-list and vertex-list) in Appendix A.

Table 1: Subdivision time (in seconds) for the Pawn mesh (Fig 17)
to reach resolution i+1 from resolution i. ACM: Atlas of connectivity
maps. HE: Half-edge.

Resolution #of Faces ACM HE
2 912 0.003 0.161
3 2736 0.007 0.231
4 8208 0.015 1.837
5 24624 0.016 9.375

6.2 Multiresolution
While subdivision methods are used to create high resolution ob-
jects, reverse subdivision can be used to make low resolution ob-
jects. When combining the two into a multiresolution framework,
it is possible to define a compact representation in which the stor-
age requirements for the details and coarse vertices together equal
the storage requirement of the fine vertices. As noted earlier, Olsen
et al. [16] provides a compact multiresolution in which vertices are
categorized into even and odd vertices. After reverse subdivision,
even vertices are replaced by coarse vertices and details are located
at odd vertices. The details of even vertices, therefore, are found
using a linear combination of odd details in its neighborhood.

Using our proposed method, it is possible to build efficient data
structures for this type of multiresolution based on a variety of sub-
division methods. In this section, we describe our proposed data
structure for multiresolution frameworks based on Catmull-Clark,
Loop, and

√
3 reverse subdivision.

Catmull-Clark: The reverse subdivision filters for Catmull-
Clark and Loop subdivision are respectively provided in [17] and
[16]. Here, we discuss how to access the neighbors of a coarse
vertex and its corresponding details, which are essential operations
in the reconstruction process. In fact, the even/odd representation
of vertices can be extended to several levels of reverse subdivision
by using mentioned hierarchical relationships. As a result, ver-
tices with indices (a,b)r after n levels of reverse subdivision are
a coarse vertex if

⌊ a
2n

⌋
= a

2n and their corresponding details are lo-
cated at (c,d)r if

⌊ c
2n−1

⌋
= d

2n−1 . Fig 19 illustrates the application
of Catmull-Clark reverse subdivision to a connectivity map. To ac-
cess the neighbors of a coarse vertex and its corresponding details,
scaled neighborhood vectors are used. The structure of the neigh-
borhood vectors remains the same as in Fig 5 but they are scaled
by 2n (after n levels of reverse subdivision) to access the neighbors
of a coarse vertex and 2n−1 to access the corresponding details (Fig
19).
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Figure 19: A subdivided connectivity map after two levels of reverse
subdivision. : coarse vertices. and : details after one and two

levels of RS. and : access to coarse vertices and details.

Loop: Since Loop subdivision uses a 1-to-4 refinement simi-
lar to Catmull-Clark subdivision, the only difference between these
schemes is the different neighborhood vectors that must be used.
Fig 20 illustrates a semiregular Venus and its reverse subdivision at
three resolutions.√

3 subdivision: The filters of
√

3 reverse subdivision in a com-
pact multiresolution framework have not yet been derived in the



Figure 20: A semiregular venus after three applications of Loop re-
verse subdivision.

literature. Using the method proposed in [16], we have derived the
reverse filters of

√
3 subdivision (see Appendix B for this deriva-

tion). To handle adjacency queries, we can use neighborhood vec-
tors with a scaling factor of three. To access details and coarse
vertices, transformations Te→o and To→e discussed in Section 5.1
are used to change the neighborhood vectors as illustrated in Fig
21.
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Figure 21: (a) and are face and vertex vertices that are replaced
by details and coarse vertices. (b) and : coarse vertices and

details. (c) :details after two levels of RS. and : access to
coarse vertices and details. Transformations of essential neighbor-
hood vectors are shown.

Connectivity operations for multiresolution methods are handled
in O(1) time since we only need to add scaled neighborhood vectors
to the CM indices of vertices. Furthermore, similar to the discus-
sion for subdivision methods, the ACM does not manipulate any
pointers to change the connectivity when reverse subdivision is ap-
plied. To quantify this comparison, we compare the speed of ACM
with the data structure of [15] to reverse subdivide a subdivided
tetrahedron. Specification of the system is as mentioned in Section
6.1.

Table 2: Reverse subdivision time (in seconds) required by ACM and
the data structure provided in [15] for a tetrahedron to reach resolu-
tion i−1 from resolution i.

Resolution #of Faces ACM [15]
7 16384 0.027 2.851
6 4096 0.006 0.312
5 1024 0.001 0.032
4 256 0.0009 0.028

7 CONCLUSION

In this paper, we have proposed a mapping to capture the connec-
tivity of semiregular meshes obtained from repetitive refinements.
This mapping is based on the initial connectivity of the mesh by
defining an atlas of 2D domains called connectivity maps. After
setting up the connectivity, a local coordinate system (and trans-
formations) is assigned to each connectivity map which is used to

handle connectivity queries and refer to a 2D array containing the
3D locations of vertices. Having such an initial set up, it is possible
to support regular refinements. Based on the effect of the refine-
ments on the local coordinate system of each connectivity map, we
have categorized the refinements and proposed how to handle them.
Our method is applicable to triangular and quadrilateral faces. If the
faces of the initial mesh are totally arbitrary, the mesh is first trian-
gulated and then connectivity maps are assigned to each triangle
pair. We have also examined the efficiency of our data structure
for subdivision and multiresolution surfaces, and shown that our
method is efficient in comparison with two other alternatives.
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A SPACE COMPLEXITY ANALYSIS

ACM is also efficient in terms of space. Consider a mesh with
f faces, v vertices and e edges. ACM stores a constant amount
of data for the initial set-up that does not grow through the res-
olutions. After r applications of 1-to-4 refinement, ACM stores
≈ 4r× v+(2r +1)× e vertices (≈ (2r +1)× e are duplicated ver-
tices at edges). Consider that an alternative data structure S stores
only faces and vertices. S needs to store 4r× f faces and 4r×v ver-
tices at resolution r. ACM stores ≈ (2r +1)× e more vertices than
S while S stores 4r+1× f more pointers to refer to vertices. Since S
needs data information with a larger exponential factor compared to
ACM, after a few resolutions, ACM needs to store much less data.
For triangular meshes, since ACM reduces number of faces to f

2
and edges to e− f

2 at the initial resolution by pairing triangles, it is
even more efficient than the quad case.

The weakness of ACM is the need for empty indices at odd reso-
lutions in refinements with rotations, such as the 1-to-2 refinement.
In this case, ACM stores ≈ 4r × v+(2r + 1)× e vertices while S
stores 2r × f faces and 2r× v vertices. Note that S is a basic data
structure and much simpler than edge-based data structures (such as
the half-edge), yet ACM performs better than S. As a result, we can
conclude that ACM is more efficient than other data structures, in-
cluding half-edge, not benefiting from the regularity of refinements.

B
√

3 REVERSE SUBDIVISION

The filters of
√

3 reverse subdivision are provided in this section.
Using the method proposed in [16], the following equations are ob-
tained for

√
3 reverse subdivision. In this method, the details of

vertex vertices (d0) are determined by a linear combination of the
details of face vertices (di) in their neighborhood (Fig 22). Equa-
tion 2 demonstrates this relationship. Equation 3 also indicates how
the coarse vertex of a face vertex can be obtained using the vertices
in its neighborhood. To avoid magnifying the results from reverse
subdivision, coarse vertices are refined by vector δ0 which is ob-
tained by an optimization to reduce the magnitude of the details di

[16]. Note that α =
4−2cos( 2π

n )
9 is the parameter to find the position

of vertex-vertices in
√

3 subdivision [9].

d0 =
3

2n
α

n

∑
i=1

di (1)

c0 =
1

1− 3
2 α

f0−
α

n( 2
3 −α)

n

∑
i=1

fi (2)

δ0 =
3
2n (1−α)+ 1

3
(1−α)2 + n

9

n

∑
i=1

di (3)
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