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Geospatial data is gathered through a variety of different methods. The integration
and handling of such data-sets within a Digital Earth framework are very important
in many aspects of science and engineering. One means of addressing these tasks
is to use a Discrete Global Grid System and map points of the Earth’s surface to
cells. An indexing mechanism is needed to access the data and handle data queries
within these cells.. In this paper, we present a general hierarchical indexing mechanism
for hexagonal cells resulting from the refinement of triangular spherical polyhedra
representing the Earth. In this work, we establish a 2D hexagonal coordinate system
and diamond-based hierarchies for hexagonal cells that enables efficient determination
of hierarchical relationships for various hexagonal refinements, and demonstrate its
usefulness in Digital Earth frameworks.

Keywords: Digital Earth Framework, Hexagonal Subdivision, Indexing,
Triangulation, Hierarchy, Multiresolution.

1. Introduction

Digital Earth is a framework for the management and manipulation of geospatial
data, spanning a multitude of scientific disciplines (Goodchild 2000). In this frame-
work, data is assigned to locations and may be analyzed at multiple resolutions.
Each resolution of this framework provides data with a specific level of detail. This
multiresolution property is beneficial for efficient vector-data and coverage based
data (Wartell et al. 2003). For practical purposes, the finest resolution is usually
high enough such that cells with area in square millimeters can be supported.

One approach in assigning data to the Earth’s positions is to discretize the globe
into regions called cells. Cells then represent areas containing geospatial informa-
tion associated with a point of interest. Several methods exist to partition the
Earth. Latitude/longitude lines or Voronoi cells can be used to partition the Earth
into regions of irregular size or shape (Chen et al. 2004, Faust et al. 2000). How-
ever, regular cells are often more desirable for a Digital Earth framework as they
support efficient algorithms for handling important queries such as containment
(which cell includes a point), neighborhood finding, and determining hierarchical
relationships between cells (Sahr et al. 2003).

Discrete Global Grid Systems (DGGS) provide a representation of the Earth
with mostly regular cells (Goodchild 2000, Sahr et al. 2003). The cells of DGGS
may be triangular, quadrilateral (squares or diamonds) or hexagonal. Hexagonal
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Figure 1.: Icosahedral Snyder Equal Area Aperture 3 Hexagonal Grid (ISEA3H)
(PYXIS Innovation 2014).

cells are particularly desirable due to their unique characteristics, including uniform
definition for adjacency and reduced quantization error (Sahr 2011, Snyder et al.
1999). Figure 1 illustrates the Earth partitioned using hexagonal cells.

Six types of hexagonal refinement are mostly used throughout the literature:
1-to-3, 1-to-4, and 1-to-7 refinement in both their centroid-aligned and vertex-
aligned variants (Figure 2). Centroid-aligned refinements (c-refinements) produce
refined cells sharing centroids with coarse cells while vertex-aligned refinements (v-
refinements) generate refined cells with vertices that are shared with the centroid
of coarse cells. To generate multiple resolutions with regular spherical cells, a poly-
hedron is refined and its resulting faces are projected to the sphere by a spherical
projection. Area preserving projections such as Snyder projections are especially
preferable as they simplify data analysis on the Earth (Snyder 1992).

(a) (b) (c) (d)

Figure 2.: The c-refinements and v-refinements (shown in orange and red, respec-
tively) for 1-to-3 refinement ((a), (b)), 1-to-4 refinement ((c),(d)), and 1-to-7 re-
finement ((e), (f)).

To associate information with cells at different levels of refinement, a data struc-
ture is required. Quadtrees (Samet 2005, Tobler and Chen 1986) are commonly used
to support spatial queries for quad cells; but require many pointers to establish con-
nectivity between nodes, which reduces efficiency in high resolution applications
with a large data load. To overcome this issue, several indexing methods have been
developed for quadtrees. However, quadtrees and their indexing methods cannot be
directly applied in the hexagonal case, due to the lack of congruency of hexagons.
As a result, an indexing specifically designed for hexagonal cells or an adapting
mechanism to benefit from simple congruent shape of quads is required that can
efficiently support essential queries.

Existing hexagonal indexing methods primarily operate on a complicated fractal-
like coverage hierarchy that makes the operations difficult to handle. They are also
defined only for a specific type of refinement or polyhedron. In this paper, we
introduce a general scheme for indexing hexagonal cells based on modifications
of hexagonal coordinate systems. This indexing maintains the hierarchical rela-
tionships between successive resolutions. The proposed scheme is general and not
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dependent on a specific type of polyhedron or refinement, handling essential queries
such as hierarchical traversal between cells and neighborhood finding in constant
time. Instead of using fractal coverage hierarchies, we define two simple diamond-
based hierarchical coverage for hexagons and demonstrate their usefulness for a
Digital Earth framework through several example results.

As part of our method evaluation, we compare our indexing with PYXIS indexing
(Peterson 2006, Vince and Zheng 2009). PYXIS indexing is from the same category
of a set of hierarchical indexing methods designed for hexagonal cells that use a
fractal hierarchical coverage (Sahr et al. 2003, Gibson and Lucas 1982).

We organize the paper as follows: Related work is presented in Section 2. The
terminology of the paper is established in Section 3. Section 4 describes our com-
prehensive indexing method. Hierarchy is formally defined in Section 5, and two
variations of hexagonal hierarchy as well as their benefits are also presented. In
Section 6, we provide comparison and results. We describe a common hierarchical
indexing method called PYXIS indexing and compare results with our method. We
finally conclude in Section 7.

2. Related Work

One way to represent the Earth is to use DGGS. These systems differ from each
other based on the underlying polyhedron, type of cells, refinement, projection and
data structure employed. In the following, we provide some work related to each
of these elements. For a complete survey, please refer to Goodchild (2000) and
references therein.

Underlying Polyhedra: Numerous polyhedra have been used to approximate
the Earth. For instance, an octahedron can be projected to the sphere in such a
way that each face corresponds to an octant of the latitude/longitude spherical
coordinate system (White 2000). The tetrahedron has been used to represent the
Earth in 3D engines that render a virtual globe due to its simplicity (Cozzi and
Ring 2011). The truncated icosahedron better approximates the sphere (White
et al. 1992). Note that the truncated icosahedron can be constructed by refining
the regular icosahedron which itself is widely used as it induces less distortion as
compared with other platonic solids (White et al. 1992). Therefore, the truncated
icosahedron is also widely used for approximating the Earth (Fekete and Treinish
1990, Sahr 2008, White 2000, PYXIS Innovation 2014, Vince and Zheng 2009).

The cube is also an interesting polyhedron for spherical representation due to its
adaptability to Cartesian coordinates, hardware devices and existing data struc-
tures such as quadtrees (Alborzi and Samet 2000, Mahdavi-Amiri et al. 2013). The
dodecahedron, which has 12 pentagonal faces, has been also used for Earth repre-
sentation (Wickman et al. 1974). However, since pentagon-to-pentagon refinement
has not been defined, they are not a popular choice for hierarchical representation
of the Earth.

Type of Cells: Different shapes - such as hexagons, quads or triangles - can
be used as cells for GDGGS. For instance, Alborzi and Samet (2000) use quadri-
lateral faces of a refined cube while Dutton (1999) uses the triangular faces of an
octahedron.

In this paper, we consider hexagonal cells. As discussed by Sahr (2011), this type
of cell is preferred in many applications due to their uniform adjacency, regularity,
and support for efficient sampling and smooth subdivision schemes (He and Jia
2005, Kamgar-Parsi et al. 1989, Claes et al. 2002). Although hexagonal cells may
be the best choice for sampling the surface of the Earth, they need to be addressed



May 21, 2014

International Journal of Digital Earth tJDEguide

and rendered efficiently. We use diamonds (unit squares in hexagonal coordinate
systems) to efficiently address hexagons and show how to triangulate them for
efficient rendering (White 2000).

Type of Refinement: Refinements are used to make finer cells based on initial
coarse cells. Refinements are widely used in subdivision surfaces to make smooth
objects (see Cashman 2012, and references therein). They can also be used to con-
struct more cells on the sphere by refining polyhedral faces. To show the generality
of our approach, we use six types of hexagonal refinement: 1-to-3, 1-to-4, and 1-
to-7 c-refinements and v-refinements (Figure 2). Each of these refinements features
some benefits over the others. 1-to-3 refinement increases the number of faces at
a lower rate compared to the other two. Under this refinement, more resolutions
are produced under a fixed maximum number of faces and, therefore, enables a
smoother transition between resolutions. For example, Sahr (2008) uses hexagonal
1-to-3 c-refinement on an icosahedron while Vince (2006) uses the same refinement
on the octahedron. While other refinements introduce a rotation in the lattices of
two successive resolutions (Ivrissimtzis et al. 2004), hexagonal 1-to-4 refinement
produces aligned lattices at all levels of resolution, simplifying hierarchical analysis
(Sadourny et al. 1968, Thuburn 1997, Tong et al. 2013). None of these six refine-
ments create a congruent coverage for the hexagonal lattices, i.e. a coarse hexagon
is not aggregated by an exact number of fine cells (Sahr 2011). However, 1-to-7
refinement covers the hexagonal coarse shape better than the others. As a result,
there is growing interest in this type of refinement (Middleton and Sivaswamy
2005).

Data Structure: Indexing methods proposed for hexagonal cells have their
own advantages and limitations. Vince (2006) proposes an efficient indexing based
on barycentric coordinates for a 1-to-3 hexagonal refinement of the octahedron
by initially placing its vertices at coordinates (+1,0,0), (0,+£1,0), and (0,0, £1).
Throughout the resolutions, the barycenter of each cell is taken to be its index.
This method has been modified for a 1-to-4 hexagonal refinement of the same
polyhedron (Ben et al. 2010). However, both of these methods are designed for
a specific polyhedron and refinement and their extension to other polyhedra is
not straightforward, since the vertices of other polyhedra do not fall nicely on
independent axes.

Alternatively, in (Vince and Zheng (2009), PYXIS Innovation (2014)), an ap-
proach is used to index hexagonal cells of an icosahedron similar to generalized
balance ternary indexing (Gibson and Lucas (1982)) (see Section 6.1) . In this
method, the prefix of every fine resolution cell is the index of its parent. Sahr (2008)
also uses a similar approach to PYXIS indexing. Sahr also suggests a pyramid in-
dexing based on hexagonal coordinate systems similar to the methods proposed
in (Middleton and Sivaswamy 2005, Snyder et al. 1999, Sahr 2008, Burt 1980).
Pyramid indexing works well for single resolution applications but it is not de-
veloped for multiresolution cells resulting from an arbitrary hexagonal refinement.
Moreover, the multiresolution described by Middleton and Sivaswamy (2005), Sahr
(2008) and Vince and Zheng (2009) is based on a fractal coverage resulting from
a particular definition of hierarchy or circularly aggregating cells. These fractal
coverages, however, are hard to render and their neighborhood finding operations
are expensive (see Section 6).

In this paper, we propose a hexagonal indexing to support both hierarchical
traversal and neighborhood finding in constant time. Our proposed indexing is
general to support various refinements and polyhedron. This indexing is derived
by means of hexagonal coordinate system for a single resolution (Middleton and
Sivaswamy (2005), Snyder et al. (1999)). To define a hierarchical relationship
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among the indices of cells, we establish a mapping between the coordinates of
two successive resolutions resulting from the employed hexagonal refinements. We
also provide a diamonds based hierarchical traversal that provides a full cover-
age for polyhedra with a simpler boundary in compared to common fractal based
coverages (Vince and Zheng (2009), Sahr (2008)).

3. Basic Idea and Terminology

In this section, we explain the basic ideas and terminologies that we use through-
out the paper. The surface of the Earth is represented by a spherical polyhedron
in DGGS. As our hexagonal cells are created by simply refining triangular poly-
hedrons and taking the duality, we focus on triangular polyhedrons (icosahedron,
octahedron, and tetrahedron). To work with these polyhedrons, we unfold them to
simple diamond patterns within a 2D domain since our indexing method benefits
from diamonds (see Figure 3). This pattern provides a mapping between 2D and 3D
polyhedron since each triangular face of the polyhedron corresponds to a 2D trian-
gle on the 2D pattern. Knowing this correspondence between 2D and 3D triangles,
it is easy to map all points of these triangles using barycentric coordinates.

Figure 3.: (a) An icosahedron (b) Unfolded icosahedron to a set of diamonds d;.
(c) Making hexagons by refining a diamond and applying duality.

By using triangular refinements and taking the duality (e.g. replacing each face by
a point and connecting the points whose correspondent faces are neighbors), initial
hexagons are created (see Figure 3 (c)). We can then use one of the six hexag-
onal refinements on the initial hexagons and create multiple resolutions. These
hexagons are then projected to the sphere. Each hexagon on the 2D domain has a
corresponding hexagonal face on the polyhedron and hexagonal cell on the sphere
(see Figure 4).
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Figure 4.: (a) A red hexagon is shown on an unfolded tetrahedron. (b) The corre-
sponding hexagonal face is drawn in red on a refined tetrahedron. (c¢) The corre-
sponding cell is shown on a spherical tetrahedron.

A 2D lattice [ is an array of points generated by a linear combination of two
basis vectors U and V' as aU + SV with integer « and . [ is bounded when « and
B are finite. Hexagons of each diamond form a 2D bounded hexagonal lattice. To
index these hexagons, we employ hexagonal integer coordinate systems that are
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compatible with the bounded lattice. A hexagonal coordinate system is defined as
a triple (O, U, V') in which O is the origin centered on an arbitrary hexagon and U
and V are two unit length vectors with 120° degree difference.

When a refinement is applied on a lattice to provide multiple resolutions, a set of
new cells are produced. On these new cells, coordinate system (Oy41, Up41, Vig1) i8
defined. If (O,, U,,V,) and (Oy41,Uy41, Vr4+1) are the coordinate system at resolu-
tion r and r+1 respectively, transformation 7. exists that transforms (O,, U, V;.)
to (Op+1,Ury1, Vig1) . Using Th.cr, we derive simple relationships between indices
at multiple resolutions for various types of refinements. Using diamonds and these
simple relationships, we establish two types of hierarchy that are beneficial to ad-
dress essential queries.

“ r Tref
/—\ Vr+1
‘ Ur+‘\
Or or+1
u
(a) (b)

(] (d) (e)

Figure 5.: (a) Triple (O,,U,,V;) defines a coordinate system for resolution
r.(b) 1-to-3 refinement is applied and resolution r 4+ 1 is generated. (c) Triple
(Or41,Ur41, Vrg1) for resolution r 4+ 1. (d) Two successive resolutions are over-
layed. (e) Tyef maps (O, Uy, V;) to (Ory1, Urg1, Vigr).

4. Indexing Hexagonal Refinements

To assign data to cells and also address essential queries such as neighborhood
finding, rendering and retrieve data, we need a data structure. We use an index-
ing method obtained from hexagonal coordinate systems for this purpose. Given
hexagonal coordinate systems (O,, U, V;.), all hexagons get the integer coordinate
of their centroid (a, b), as their index, where their centroid is a units from O, along
U,, and b units along V,. Indices are always integer indicating the distance of the
centroid of a hexagon to O, along U, and V,. (see Figure 6 (a)). When refinements
are applied on hexagons, a set of new hexagons are created and indexed in the
coordinate system (O,41,Up41, Viy1) ( the transformed version of (O,,U,,V,) by
Trey-

m
Ea

(a)

Figure 6.: (a) Hexagonal coordinate system and its associated indexing. (b) An
unfolded octahedron and a hexagon falling in d;. (c¢) Diamond d(a, b) has its origin
at (a,b) with axes aligned with the hexagonal coordinate system.

As discussed earlier, initial diamonds formed by pairing two triangles, are
bounded lattices. These initial diamonds have coordinate systems aligned with
the coordinate systems of hexagons at the first resolution. To distinguish between
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Hexagonal Coordinate System
at Resolution r

Cartesian Coordinate System
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at Resolution r+1

Figure 7.: Diagram illustrating hexagonal coordinate systems at successive resolu-
tions and their connection to Cartesian coordinate systems.

hexagons in different diamonds, we label each diamond by d; and a hexagon lying in
d; at resolution r has index [d;, (a,b),](Figure 6 (b)). We can also define diamonds
associated with each hexagon as quads with edges aligned to axes U, and V, of a
hexagonal coordinate system (see Figure 6 (c)). As a result, each hexagon (a,b),
is associated with a diamond d(a,b), with the same area and coordinate system.

4.1 Mapping Resolutions

To traverse from a coarse resolution cell to a fine cell, a mechanism is needed that
relates the successive resolutions. To achieve this, we determine the mapping R from
indices of resolution r, to indices of resolutions r + 1. There exists a connection
between T and R as illustrated in Figure 7. We discuss more about the connection
in this section.

To map the indices of a coarse resolution r to the fine indices of resolution
r+1, we use the basis transformation. For doing this, let R(0,1), = (m,n),4+1 and
R(1,0), = (p,q)r+1, (a,b), has coordinate (s,t),+1 where R(a,b), = (% 5)(§)r =
(s,t)r+1. Note that we can also obtain R by mapping the hexagonal coordinates
to the Cartesian coordinates. In fact, R = T, TTT_+11 where T, maps the hexagonal
coordinates of resolution r to the Cartesian coordinates. Table 1 lists these matri-
ces for 1-to-3 c-refinement when 7.y is composed of ? scaling and 30° rotation.
Moreover, T;11 = Ty¢f T, therefore, choosing different T}y affects T.,1 and con-
sequently affects R. In the following, we discuss how to generalize these equations
to multiple resolutions and choose T;..f to simplify mapping R.

Table 1.: Basis equality matrices for 1-to-3 c-refinement.

R Tref Tr T’I’+1
_ 2 -1 3 -3
(L) 3G 165 3 5A)

The matrix multiplication used to traverse between resolutions can be generalized
for multiple resolutions and simplified to scalars. If (a, b), is an index of a hexagon,
it has index R™(a,b), = (s,t)r+n then 1-to-4 c-refinement, T,.¢ is simply a scaling
by % and R is just a scaling by two. As a result, R" is also a scaling by 2".
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For other refinements, the form of R is not as clean as 1-to-4 refinement as R
is not represented as a simple scaling. However, we can carefully define coordinate
systems to simplify R. In 1-to-3 c-refinement, by taking even/odd resolutions coor-
dinate systems aligned with even/odd resolutions, we can simplify traversing two
resolutions to a scaling by three. This is due to the fact that T.cf(c_s0), transform-

ing coordinate system of even resolutions to odd is @ scaling and 30° rotation,

and T,.cf(c—o) is composed of the same scaling with —30° rotation. Rotations of
these transformations are canceled out and only a scaling is preserved. These two
transformations lead to two different R matrices called R._,, and R,_.. correspond-
ing t0 Trep(e—so) and Trcp(oe) Tespectively. Re o /Ro—e that map an index of an
even/odd resolution r to an odd/even resolution r + 1 are listed in Table 2 (Left).

(a)

Figure 8.: (a) Hexagonal coordinate system and their Cartesian coordinates used
to define T;.. (b) (O, U,,V;) are transformed by T}..s and new red coordinate sys-
tem (Oyy1,Ur41,Viq1) is obtained. (1,0), and (0, 1), have hexagonal coordinates
(1,—1)y41 and (1,2),41 respectively in (Op41,Urt1, Vit1). (c) We can take coordi-
nate system of (Oyy2,Uyy2, Viyo) aligned with (O,,U,,V,).

Table 2.: Left: Mappings for 1-to-3 refinement. Right: Mapping for 1-to-7 refine-
ment.

Refinement Re—o Rooe R Refinement Ry R_ R
1-to-3  (43) (73 (%) Lto-7  (23)

In 1-to-7 c-refinements, we cannot take aligned coordinate systems at every two
successive resolutions and reduce mapping R to a scaling. This is due to 19° rotation
of 1-to-7 refinement that is not canceled out after two resolutions. To simplify
R™(a,b),, we can consider (a,b), = avy + vy where v; are the eigen-vectors of
R. Therefore R"(a,b), is simplified to aA{ + SAJv1 where \; are corresponding
eigen-values to eigen-vectors v;. However, we can obtain even simpler mappings, if
we switch between two versions of 1-to-7 refinements with 19° and —19° rotations
(see Figure 9). If we alternate between these two refinements, R is simplified to
scaling by 7. R, and R_ corresponding to 1-to-7 refinements with 19° and —19°
respectively are presented in Table 2 (Right).

Table 3.: Origins at resolution r + 1 for v-refinements at even and odd resolutions.

Refinement Even Odd

v 1-to-3 (%7 %)T‘ (%i’ ;’Tl)r
vitod (0,000 (5 3)o
vi-to7 (0,000 (2,2
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Figure 9.: (a), (b) 1-to-7 refinement with 19° and —19° rotation. (c) Applying 1-to-
7 refinement with 19° rotation followed by 1-to-7 refinement with —19° rotation.
Note that it is possible to take aligned coordinate systems after two resolutions.

4.2 Mapping Resolutions for v-refinements

If the set of centroids of all hexagons at resolution r is denoted by C”, then un-
der c-refinement, C"™ C C™!. This means a coordinate (s,t),4+1 (s,t € Z) exists
which indices the same location as (a,b), (a,b € Z). However, in v-refinements,
the centroids of two successive resolutions are not aligned due to the translation in
Trep- As a result, and unlike c-refinements, we cannot choose the same origin for
all resolutions. However, using a systematic predetermined location for the origins,
we can calculate the locus of the origin at all resolutions.

Figure 10.: Origins of v-refinements at subsequent resolutions for (a) 1-to-3 (b)
1-to-4 and (c) 1-to-7 refinements. Fixed origins at odd and even resolutions are
taken in (b) and (c).

In the 1-to-4 and 1-to-7 v-refinement the lattices are aligned at every other
resolution. As a result, we choose a fixed origin at the even and odd resolutions
(see Figure 10 (b), (c)). However, for 1-to-3 refinement, lattices are never aligned.
We choose R(3, 3), for even r and R(t, 5), for odd r as the origin of resolution
r + 1 (Figure 10 (a)). Using geometric series, we define a closed form for the
origin of 1-to-3 refinement, discussed in more detail in Appendix A. Table 3 lists
the origins of v-refinements at even and odd resolutions. This way, by defining
coordinate systems at two successive resolutions, we define a simple mapping to

traverse between resolutions both for c-refinements and v-refinements.

4.3 Reverse Mapping

In addition to traversing from coarse resolutions to fine resolutions, mapping from a
fine resolution cell to a coarse cell is also needed. A relation to traverse back through
the resolutions and find a coarse hexagon is obtained by inverting the refinement
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matrix R. If we apply (R~!)* on arbitrary hexagon (¢, d)y4y, it gives index (4, b),
in which ¢ and b are not necessarily integers. To obtain a valid integer index at
resolution 7, we use the floor function (|d], {bJ )r = (a,b),. We will describe how

this choice is compatible with our diamond-based hierarchy in the following section.

5. Hierarchy

From hexagonal refinement, a hierarchy can be defined. In defining hierarchy, each
fine cell has exactly one corresponding coarse cell at any resolution except the
coarsest. Formally, let S” denote the set of n cells at resolution r, ¢ € S" (0 <
i < n) denote the cells of S”, and cor¥(c!) denote the set of cells assigned to ¢! at
resolution r + k. Every cell at resolution r+ k has exactly one corresponding coarse
cell at resolution r, hence cor®(ch)U...Ucor®(c" ;) = S™** and cork(cg)ﬂcork(cg) =
¢ when ¢ # j. This way, we can define a hierarchical traversal query to find the set
of all cells (cor¥(c})) corresponding to a given cell ¢}, or determine the coarse cell
¢} corresponding to a given fine cell c§+k (i.e. c§+k € cork(cr)). In this paper, we
provide two hierarchical coverage (congruent and incongruent) for hexagons which

both benefit from diamonds.

5.1 Congruent Hierarchy

It is possible to define a congruent hier-
archy for diamonds. This means that a
coarse diamond can be completely cov-
ered by a set of finer scaled diamonds.
This is the simplest type of hierarchy as
the set of fine cells that are covered by a
coarse diamond can be indexed in a sim-
ple range. For example, if a coarse dia-
mond with index d(a, b), is refined n times

by 1-to-4 refinement, the finer indices un- Figure 11.: (a) Hexagon (a,b), and
der d(a,b), have index d(s,t)y4n where its corresponding diamond d(a,b),.
Mg < s < 2"(a+1) and 2" < t < (b) After two applications of 1-to-
2"(b + 1). Using the corresponding dia- 4 c-refinement, the diamonds corre-
mond to each hexagon, we can define a sponding to the 16 fine cells assigned
similar hierarchy for hexagons. to (a,b), partition d(a,b)..

As discussed earlier, each hexagon

(a,b), has a corresponding diamond d(a, b),. We consider hexagon (m, n),1 (where
k is a positive integer) assigned to coarse hexagon (a,b), if centroid of (m,n), 4
falls in diamond d(a,b), (see Figure 11). Since we have simplified the mappings
to aligned coordinates handling by scalars, this diamond-based hierarchy is well-
defined for hexagons. Notice its boundary is also simpler than fractal coverage,
therefore providing an efficient rendering, simple hierarchical relationships and
neighborhood finding. Additionally, it supports mapping to other quad-based data
structures as desired.

5.2 Incongruent Hierarchy

10
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Although our proposed congruent hierar- Table 4.: (i, 7) is covered by Dy, if it
chy is simple and efficient, fine hexagons falls in the ranges below.

assigned to a coarse hexagon in this hier-

archy are not fully located in the coarse Diamonds Ranges

hexagon. In some queries of data analy- Do 0< Z <1

sis, we may need to determine the fine 0<y<1
hexagons that are actually covered by a Dy 0<—i<1

coarse hexagon (a, b), (see Figure 12 (a)). 0<—-i<1

We call such fine hexagons children of Dy 0<—y<1

(a,b), while (a,b), is the parent. An in- -1<i+5<0

stance of such queries is when data is

available for a specific fine resolution and we want to aggregate this data as an
estimation for a coarse resolution. To find children of (a,b),, we consider four di-
amonds that have shared fine hexagons with (a,b), (see Figure 12 (b)). These
diamonds have indices d(a,b),, d(a,b —1),, d(a — 1,b),, and d(a —1,b — 1),. Only
a subset of hexagons at resolution r 4+ n,n > 0 covered by these diamonds are also
covered by (a,b),. As a result, we need to determine whether hexagon (u,v)4n
covered by the diamonds also falls in (a,b),. To this end, we first split (a,b), into
three diamonds Dy, 0 < k < 2, specified under a new (O, I, J,.) coordinate system
illustrated in Figure 12 (c¢). We then find a mapping M (u,v) — (i,7) that maps
the (Oyyn, Urin, Vign) coordinate system of the hexagons to the I — J coordinate
system of the D;. (u,v),4,, is covered by (a,b), if (i, j)L,,, = M(u,v)L,,, is covered
by Dy. Table 4 gives the conditions under which (i, j) is covered by one of the Dy.
For example, M in Figure 12 (d) is 2(31)(u—4a,v —4b)T and (4a+ 3,4b+ 1), 42
is not covered by (a,b), since (i,5) = (1, I).

(4a+3,4b+1),,
-(1+))
r+2

Figure 12.: (a) Diamonds covering (a, b)r and their U, — V, coordinate system. (b)
The I —J coordinate system of (a, b), and the Dy. (c) (4a+3,4b+1)s falls outside
of (a,b),.

Using diamonds, we are not only able to provide a simple hierarchical coverage to
traverse through the resolutions using the congruent hierarchy, but we are also able
to exactly determine the fine hexagons that are covered by a coarse hexagon using
incongruent hierarchy. However, fractal coverages are unable to efficiently support
this operation as they do not provide exact fine hexagons covered by a coarse
hexagons. As a result, our diamond-based hierarchy outperforms fractal coverages
in both data analysis queries and hierarchical traversal.

6. Comparison and Results
In this section, we discuss the usability of our indexing method and compare it

to a 1D indexing proposed in (Vince and Zheng 2009) and developed by PYXIS
Innovation (2014). PYXIS indexing is similar to the set of 1D indexing methods
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proposed in (Sahr et al. 2003, Middleton and Sivaswamy 2005, Gibson and Lucas
1982), therefore our comparison and claims are still valid for these 1D indexings.
We describe PYXIS indexing and then demonstrate some of the results of our
method implemented in PYXIS software that uses spherical icosahedron and 1-to-
3 c-refinement. We also provide results on other refinements and polyhedrons.

6.1 PYXIS Indexing

PYXIS indexing is designed for 1-to-3 c-refinement of an icosahedron (Vince and
Zheng (2009)). The initial application of such a refinement results in a truncated
icosahedron. In this indexing scheme, each face of the truncated icosahedron is
indexed by a number or letter. Afterwards, cells are categorized into two types A
and B, generating different fractal shapes throughout the resolutions that perfectly
fit together and cover the entire surface of the spherical icosahedron. Each type B
cell is surrounded by six type A cells.

The fine cell sharing a centroid with a coarse cell is called the centroid child.
Other fine cells, whose centroids are aligned with the vertices of a coarse cell, are
called vertex children. A type B cell with index b has a centroid child with index
b0 and six other vertex children with indices bi (1 < i < 6, ¢ € N) based on
their direction to b. Only the centroid child of a type A cell a inherits its index
from a receiving index a0. Centroid children and vertex children are considered to
be of type B and A, respectively, at the next resolution, and a similar process of
indexing is applied to these finer cells. This way, the set of children of a cell at fine
resolutions features a fractal shape boundary (see Figure 13). Consequently, a cell
at resolution r has index mapa; ...a,—1 in which (1 < a; < 6, a; € N) and m
is an arbitrary initial letter or number representing the parent cell at the coarsest
level.

Figure 13.: (a) Type A cells (orange) surround a type B cell (black) with index
a. (b) The children of cells illustrated in (a) (c) and (d) The children of type A
and B cells, respectively, at five successive resolutions. Notice the fractal boundary
developing at the finer resolutions.

6.2 Operation Comparison

In this section, we compare the performance of our indexing to the important
geospatial operations of neighborhood finding, hierarchical traversal and conversion
to Cartesian coordinate systems.

6.2.1 Neighborhood Finding

Finding the neighbors of a cell is one of the fundamental queries within a Digital
Earth framework. Our indexing method handles neighborhood finding operations
simply by adding neighborhood vectors to the index of a hexagon (Figure 14(a)).

12
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Some cells located at the boundary edges of the initial diamonds of an unfolded
polyhedron may have neighbors belonging to another diamond. A boundary edge
of diamond d; is denoted by d;(m) 0 < m < 3 (see Figure 14 (c)). To find the
index of such cells, we use a mapping from a boundary edge of a diamond d; to
its adjacent diamond dj in the polyhedron along the same edge (d;(m) — di(n)).
These mappings are listed in Table 5 (Right). Given the mapping d;(m) — di(n)
and constraints for each edge (refer to Table 5 (Left)), the index of a cell on a
boundary edge d;(m) is mapped to an index in the coordinate system of dg(n). For
example, if d;(1) — di(3), index [d;, (M az, j),] is mapped to [dg, (0, j),]. Note that
Mazx is a constant for any refinement and resolution referring to the maximum
index. For example, for 1-to-4 refinement Max = 2". Figure 14 illustrates this
scenario for an icosahedron when Max =3, ¢ =1, and k = 2.

Table 5.: Left: Constraints on the indices of edges. j is variable and Maxz is a
constant. Right: Each edge of diamond d; denoted by d;(t) is connected to an edge
d;(v). Subscript addition for the d; is modulo n, where n is the number of diamonds
in the polyhedron. First/second rows of the icosahedron is for odd/even i.

Edge Constraint || Polyhedron  d;(0) d;(1) d;(2) d;(3)
0 (7,0) di-1(2) dit1(3)  diy2(3)  di—2(3)
1 (Maz,j) || NN 5(1) dis(0)  dia(0) dia(1)
2 (], Maac) Octahedron di—l (1) di+1 (0) di+1 (3) di—l (3)
3 (0, j) Tetrahedron di+1(0) di+1(3) di+1(2) di+1(1)
(3,2),
(0,2),
(2,1),
31,
(b) () (©.1s (d)

Figure 14.: (a) Neighborhood vectors for hexagons. (b) Hexagons assigned to dia-
mond d;. (c¢) Indexing the edges of a diamond. (d) We wish to find the neighbors
of red hexagon (2,1)g. The blue hexagons are obtained by adding neighborhood
vectors to (2,1)g (the red hexagon). These blue hexagons lie outside diamond d;.
Hence, they are each mapped to a valid green hexagon in diamond da.

Neighborhood finding under PYXIS indexing is handled using a large look-up
table (19 x 12 entries) through an algorithm with time complexity of O(r) for reso-
lution 7 (Vince and Zheng 2009). In our proposed indexing method, the neighbors
of a hexagon are determined in constant time (O(1)) using simple neighborhood
vectors. This difference in time complexity, which is independent of the implemen-
tation, makes our indexing superior to PYXIS indexing in operations that require
neighborhood finding.

0.2.2 Hierarchical Traversal

Traversing from one resolution to another is an important operation for ana-
lyzing and visualizing data present at different resolutions. In PYXIS indexing to
traverse through resolutions only a digit is appended or dropped from the index
mapQy - .. ap_1 in case of increasing or decreasing the resolution. This operation

13
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is performed in O(1) in PYXIS indexing. In our proposed indexing, we can also
perform with the same efficiency by multiplying R or R~! (scalar) to the index of
a given cell.

6.2.3 Converting to Cartesian Coordinates

Many available data-sets are based on traditional Cartesian coordinates or coor-
dinates that are simply converted to Cartesian coordinates such as lat-long spher-
ical coordinate systems. As a result, finding Cartesian coordinates of a given cell
(i.e. its centroid) is an important operation. In PYXIS indexing, each «; in the in-
dex maga; ... a._1 is compatible with a vector in Cartesian coordinates. Then the
coordinates of a given cell are found as a combination of all vectors corresponding
to «; which performs in O(r). In our proposed method, the coordinates of a given
cell at resolution 7 is found by multiplying 7} into its index that can be done in

o(1).

6.3 Rendering

For storing, analyzing, and managing data in Digital Earth frameworks, hexagons
are a good choice. However, to efficiently render hexagonal cells on the Earth’s
surface, they must be triangulated. Fractal-based (PYXIS) hierarchies are difficult
to triangulate and due to the high-detail fractal boundary shape tend to result
in poor triangulations. Guenette and Stewart (2008) suggest a method for an im-
proved triangulation of fractal coverage. Although it is much better than a brute
force triangulation of the hierarchical coverage (Figure 15(b)), poor skinny triangles
and high-valence vertices still exist in the final result (Figure 15(c)).

(c)

Figure 15.: (a) An adaptive fractal coverage. (b) Poor triangulation of the cover-
age illustrated in (a). (c¢) Improved triangulation using the proposed method in
(Guenette and Stewart 2008).

Diamond-based hierarchy, triangulat-
ing hexagons is easy and efficient with the
resulting triangulated mesh being GPU-
friendly (Pharr and Fernando 2005) (see
Appendix B). To triangulate a diamond
covering a set of cells, we create the dual
mesh formed by connecting the centroids
of the hexagons (Figure 16). For level-of-
detail purposes, two diamonds might be Figure 16.: (a) A set of hexagons
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at different resolutions. We connect these covered by a diamond. (b) Triangu-
diamonds to each other via a method sim- lation of a diamond. (c) Two dia-
ilar to the adaptive refinement of /3 sub- monds at two different resolutions.
division (Kobbelt 2000). We show how to Red portion shows the transition
connect two diamonds resulting from 1- between two resolutions to avoid
to-3 c-refinement in Figure 16. Other re- cracks.

finements are handled similarly.

14



May 21, 2014

International Journal of Digital Earth tJDEguide

To illustrate diamond coverage, its correspondence to hexagons are visualized
in Figures 17 to 20. Triangulation of a portion of the globe at two successive
resolutions of 1-to-4 c-refinement and its triangulation are illustrated in Figure
17. An octahedral Digital Earth resulting from a 1-to-7 refinement is illustrated
in Figure 18. Figure 19 illustrates a portion of the globe (icosahedral with 1-to-3
refinement) in a close up view. The transition between diamonds at two different
resolutions is noticeable. In Figure 20 we visualize the elevation data corresponding
to hexagonal cells.

(b)

Figure 17.: Triangulation of a hexagonal terrain at two successive resolution of
1-to-4 refinement.

(a) (b) (c) (d)

Figure 18.: (a) Hexagonal faces resulting from 1-to-7 refinement on an octahedron.
Each initial diamond is rendered in a different color. (b), (c¢) Spherical octahedron
with hexagonal cells. (d) Textured spherical polyhedron.

Figure 19.: Hexagonal cells (left) and their corresponding triangulations (right).

7. Conclusion

In this paper, we present a multiresolution indexing method for hexagonal cells.
This indexing works with hexagonal lattices formed on unfolded polyhedra. By
providing aligned coordinate systems, we obtain constant-time hierarchical and
neighborhood finding operations, as well as conversion to Cartesian coordinate
systems. We demonstrate two diamond-based hierarchies simplifying the coverage
problem for the boundaries of polyhedra. Such a diamond-based hierarchy is very
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useful for triangulating hexagonal cells to support efficient rendering. We show how
this method works efficiently by providing several example results.
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Appendix A. Origin of Translated 1-to-3 Refinement

As discussed earlier, %(1, 1), is chosen for the origin of resolution r + 1 when 7 is
even, and %(—17 —1), for odd r. Thus, for » > 1, we have the origin at

Wl

[(1, 1)0 + (—1, —1)1 + (1, 1)2 “+ ...+ (:l:l, :El)rfl].

Since (1,1)2; = 3(1,1)p and similarly (—1,—1)2;41 = 3:(—1, —1)1, we have

3

1 1 1 1
g[(la 1)0 + (_17 _1)1 + §(L 1)0 + 6(_17 _1)1"- + ?(ilv il)O/l]'

From the sum of the first n terms of this geometric series, the locus of the origin

o1l
1S g[ 173

(1,1)0 + %(—1, —1)], n = [g} This is one possibility for de-

termining the origin of the subsequent resolutions. Alternative origins may lead to

different but closed form formulae.

Appendix B. GPU Rendering of Triangulated Diamonds

Given a triangulated diamond, we can ef-
ficiently render it using built-in OpenGL
functions such as glDrawElements() to si-
multaneously pass an array of vertices to
the GPU (Munshi et al. 2008, Chapter 7).
To do so, we make two arrays V and I.
V' stores the 3D locations of the vertices
while I refers to the indices of the vertices
in V. The indices of I are sequentially or-
dered to make rows of triangle-strips in a
diamond. Note that a vertex with 2D in-
dex (7,7) has index i x n + j in array V
if the diamond has m x n vertices. At the
last vertex of each row, we form degener-
ate triangles to link up the rows. These
degenerate triangles are not rendered and
handled by the GPU. V and I are then
passed to glDrawElements() and rendered

16

Figure Bl.: (a) A triangulated
diamond with triangle strips in dif-
ferent colors. (b) The indices of the
vertices of a diamond for array I =
(1,5,2,6,3,7,4,8,8,5,5,9,6,20,...).

Degenerate triangles form at
(4,8,8), (8,8,5), (8,5,5), and
(5,5,9).
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in GL.TRIANGLE_STRIP mode. Figure B1 illustrates an example for a diamond
and array I.
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Figure 20.: A portion of the Earth’s surface having elevation data. Top: the hexag-
onal cells with associated elevation data. Middle: The parents of the hexagonal
cells in the top figure at three successive resolutions. Bottom: The triangulation

of the diamonds corresponding to the cells illustrated in the top figure. Image is
taken from PYXIS Innovation (2014).
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