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Incremental Subdivision for Triangle Meshes
Hamid-Reza Pakdel and Faramarz F. Samavati

(a) Coarse (b) Fine (c) Incremental

Fig. 1. Subdivision of the coarse mesh produces a smooth surface. Adaptive
subdivision of the same mesh produces a smooth surface, but with fewer faces.

Abstract— We introduce incremental subdivision as a new
adaptive subdivision method for triangle meshes. While regular
(global) subdivisions produce a smooth surface from a given
polygon mesh by refining all of its faces, adaptive subdivision
produces a surface by refining only some selected areas of
the mesh. Consequently, the selected area becomes fine and
high resolution while the rest of mesh is coarse. Incremental
subdivision produces a surface whose subdivided area is identical
to when the entire mesh is subdivided regularly. In addition, as
a good effect, the resolution of the produced surface gradually
increases from coarse to fine. The incremental subdivision method
expands the specified area to create a buffer region that is
subdivided along with it. This method is efficient and easy
to implement. We apply the incremental method to Loop and
Butterfly subdivision schemes, and we compare it with other
adaptive subdivision methods. We discuss some applications of
incremental subdivision.

Index Terms— Subdivision, adaptive, incremental, triangle
mesh, Loop, Butterfly, anti-aliasing

I. INTRODUCTION

A. Subdivision Surfaces

SUBDIVISION surfaces are increasingly used in computer
modeling and animation packages. Subdivision is defined

by simple operations that are uniformly applied to a given con-
trol mesh. Repeated application of these operations produces
a sequence of meshes that converge to a surface that is smooth
everywhere. Special subdivision rules enable construction of
surfaces with varying smoothness. The subdivision operations
are efficient and allow for intuitive modelling tools. In addi-
tion, they can be applied to arbitrary topology polygon meshes.
Consequently, subdivision is replacing traditional modeling
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Fig. 2. Subdivision of a single face creates cracks where faces from
different subdivision generations meet at an edge. The numbers represent the
subdivision level that the faces belong to.

tools, such as NURBS and tensor product patches, in free-
form solid and surface modeling applications [1].

In recent years, many subdivision schemes have been devel-
oped, including Doo-Sabin [2], Catmull-Clark [3], Loop [4]
and Butterfly [5]. We have focused on Loop and Butter-
fly subdivision algorithms in this work. These subdivision
schemes operate on triangle meshes, and are commonly used
in modeling, rendering and animation systems.

B. Motivation

Starting with the input polygon mesh, each subdivision
step refines its faces and repositions its vertices to produce a
smooth surface at the limit. Repeated subdivisions increase the
number of faces exponentially, which quickly leads to heavy
computation load. In some applications it is not necessary
to refine the entire mesh. For example, visualization of 3D
models requires refinement of only the viewable and detailed
regions of the mesh. Designers sometimes need to focus on
an area of the model they are working on. Adding features
to a mesh requires an increase in the level of detail where
the feature is to be added. In these cases, subdivision of the
entire mesh would be inefficient because the large number
of subdivided faces taxes the CPU, system bus and the
graphics subsystem.

Adaptive subdivision is the refinement of a subset of the
faces of the control mesh. An example of adaptive subdivision
is given in Fig. 1. The area to be subdivided is determined
either by the user or by the application. For example, only
high curvature regions of the mesh are subdivided for fast
rendering of subdivision surfaces. In modeling applications,
the areas selected by the designer are adaptively subdivided
for finer editing.



INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING 2

C. Problem Statement

Though the idea of adaptive subdivision is simple, care must
be taken to handle connectivity and geometrical inconsisten-
cies that arise when a subset of the faces are subdivided.
As shown in Fig. 2, a single adaptive subdivision step cre-
ates cracks in the mesh where two triangles from different
subdivision generations meet at an edge. A 2-manifold mesh
is conforming if the intersection of any two faces is a line
segment or the empty set [6]. A mesh with cracks is non-
conforming. Cracks must be removed for proper rendering,
editing, animation and subdivision of the mesh.

Generally, the faces containing the cracks are triangulated
to produce a conforming mesh. The triangulation changes the
connectivity of the vertices inside the selected subdivision
area. Because the positions of the vertices are computed as a
weighted sum of their neighbours, a change in the connectivity
of the vertices within the selected subdivision area affects the
subdivision process, and leads to geometrical inconsistency
in the limit surface. The goal of adaptive subdivision is to
produce, from the selected region of the mesh, a limit surface
that is exactly the same as when the entire mesh is subdi-
vided. Therefore, all vertices within the selected subdivision
area must have the same connectivity as when the entire
mesh is subdivided.

Another effect of adaptive subdivision is that repeated
refinements of a region exponentially increases the relative
resolution of that area with respect to the rest of the mesh. The
sudden change of resolution is similar to aliasing in images
and creates artifacts when the model is rendered. It also makes
editing the model difficult. It is desired that the adaptively
subdivided mesh is balanced. In a balanced mesh adjacent
triangles differ by up to one subdivision generation [7]. The
result is a gradual increase in the resolution from coarse to
fine regions of the mesh.

Although there are existing algorithms that deal with some
of the issues noted above, they either provide a partial solution
or are inefficient. We introduce incremental subdivision as an
efficient and comprehensive solution to these problems. In par-
ticular, incremental subdivision has been designed to produce
adaptive subdivision surfaces with the following properties:

• consistent connectivity,
• consistent geometry,
• gradual change of resolution throughout the surface.

Incremental subdivision is fast and does not require a com-
plicated data structure. It is also intuitive and simple to
implement. The properties of the algorithm make it suitable
for modeling applications, and the produced surfaces can be
used in high quality renderings and animations.

The rest of this paper is organized as follows. In Sec-
tion II we give an overview of Loop and Butterfly sub-
division schemes and briefly discuss other relevant triangle
subdivisions. Section III provides a background of existing
adaptive subdivision algorithms. Incremental subdivision is
described in detail in Section IV, and is compared to other
adaptive subdivision methods. Results and some applications
of incremental subdivision are presented in Section V.

Fig. 3. One-to-four refinement in Loop and Butterfly subdivisions

(a) 280 faces (b) 110 faces (c) 4480 faces

Fig. 4. Three levels of Loop subdivision of a coarse mesh. The highlighted
edges show the 1-to-4 refinement.

II. BACKGROUND

Subdivision is the combination of refinement and averaging
operations that are recursively applied to a control mesh,
producing a smooth surface at the limit. In this section, we
give an overview of Loop and Butterfly subdivision schemes.
We chose these schemes because they are commonly used
refinement algorithms. These subdivision algorithms share the
same refinement operation, but the averaging operators that
define new vertex positions are different. Loop subdivision
produces a surface that is an approximation of the control
mesh. The surface created by Butterfly subdivision interpolates
the control mesh. Fig. 3 shows the refinement operation in
Loop and Butterfly subdivision. At each refinement step, each
face is split into four new faces.

A. Loop Subdivision

Fig. 4 shows three levels of Loop subdivision. Starting from
the input mesh M0, mesh M i+1 is obtained from splitting
the faces of mesh M i and repositioning the resulting vertices.
Mesh M i is said to be at subdivision level or depth i. The
resolution of the mesh and the subdivision depth of faces
are directly related. As the subdivision depth increases, faces
become finer and the resolution of the mesh increases. The
geometric operators that define the position of the new vertices
are represented by masks. Existing vertices vi of mesh M i are
repositioned as a linear combination of their neighbours vi

j .

vi+1 = βvi + α

n−1
∑

j=0

vi
j , (1)

where n is the valence of vertex vi and
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Fig. 5. Even and odd vertices in Loop subdivision. • denotes existing vertex
of mesh M i, � denotes even vertex of mesh M i+1, and ◦ denotes odd
vertex of mesh M i+1. Subdivision masks of sharp or boundary edges are
also shown.

and

β = 1 − nα . (3)

The vertices vi+1 are called even vertices of mesh M i+1. As
an example, in a regular mesh, where all vertices have valence
six, α = 1

16
and β = 5

8
. The splitting operation introduces odd

vertices ei+1 on the edges

ei+1 =
3

8
a +

3

8
b +

1

8
c +

1

8
d (4)

where a, b, c, d are defined as in Fig. 5.
To model piecewise smooth surfaces, the subdivision rules

are modified to break tangent continuity along the surface [8],
[9]. A crease is a tangent line smooth curve along which the
surface is C

0. Edges along the crease are tagged as sharp
and subdivided using the modified subdivision rules. Boundary
edges are sharp edges with only one incident face. Fig. 5 shows
the masks of odd and even vertices on sharp and boundary
edges. A corner is a vertex where three or more sharp edges
intersect. Corners are not repositioned during subdivision.

We can conclude from (1) and (4) that in order to correctly
compute odd and even vertices of mesh M i+1, all vertices
of mesh M i must be at the same subdivision depth. Since
in adaptive subdivision only some faces are refined, adjacent
vertices of M i may have different subdivision depths. As a
result, care must be taken to choose proper neighbours when
computing the new vertex positions.

Loop subdivision surfaces are C2 almost everywhere except
at extraordinary vertices where they are G1. In a triangle
mesh, vertices with valence six are ordinary, otherwise they are
extraordinary. In Loop subdivision, odd vertices are always or-
dinary while even vertices keep their valence. From the Euler-
Poincaré formula it can be deduced that in Loop subdivision
most vertices are ordinary, so the limit surface is C2 almost
everywhere. In Section III, we show that triangulating faces
containing cracks changes the connectivity of odd and even
vertices. This modifies the shape of the limit surface.
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Fig. 6. Mask of odd vertex in Butterfly subdivision. • denotes existing vertex
of mesh M i, and ◦ denotes odd vertex of mesh M i+1. Vertices a and b are
ordinary vertices.

B. Butterfly Subdivision

Butterfly subdivision was first proposed by Dyn, Levin and
Gregory [5]. It is an interpolating scheme, meaning that the
even vertices are not repositioned during subdivision. Fig. 6
depicts the masks of odd vertices in Butterfly subdivision. In
the regular case where a and b are ordinary vertices, the odd
vertex ei+1 on edge ab is determined by

ei+1 =
1

2
a +

1

2
b +

1

8
c +

1

8
d (5)

− 1

16
e − 1

16
f − 1

16
g − 1

16
h ,

Again, for correct results, all vertices involved in computing
ei+1 must be at the same subdivision depth.

Subdivision surfaces produced by the original Butterfly
scheme are C0 at extraordinary vertices and C1 away from
them. The subdivision mask for odd vertex ei+1 was later
modified so that the surface is also C1 at the extraordinary
vertices [10]. The position of odd vertex ei+1 on edge vivi

j

depends on whether one or both edge end-points vi and vi
j

are extraordinary. In the case where vi is extraordinary and vi
j

is ordinary, the mask of ei+1 is determined according to the
valence n of vi. For valence three

ei+1 =
9

12
vi +

5

12
vi

j −
1

12
vi

j+1 −
1

12
vi

j−1 , (6)

for valence four
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8
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3
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8
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j+2 , (7)

and for all other valences of extraordinary vertex vi

ei+1 = βvi +

n−1
∑

j=0

αjv
i
j , (8)
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(a) (b) (c) (d)

Fig. 7.
√

3-subdivision: starting from the coarse mesh (a), new vertices are
inserted at the centroid of the faces (b), and connected to the vertices of the
mesh (c). An edge flip completes the refinement (d). The bottom row shows
adaptive

√
3-subdivision. The mesh is conforming even when a subset of the

faces are refined.

Exterior edge

Interior Edge

(a) 4-8 mesh (b) Level 1 (c) Level 2

Fig. 8. 4-8 Subdivision. Vertices are inserted on interior edges at each
subdivision step.

and

β = 1 −
n−1
∑

j=0

αj . (10)

If both vertices vi and vi
j are extraordinary, then the above is

repeated for each vertex and the result is averaged.

C. Other Subdivisions

Some subdivision algorithms are designed such that their
adaptive refinement is a natural extension of the subdivision
process. The

√
3-subdivision by Kobbelt [7] and the 4-8 subdi-

vision by Luiz Velho and Denis Zorin [11] are such schemes.
Shown in Fig. 7, the

√
3-subdivision inserts new vertices at

the centroid of the faces. The new vertices are then connected
to the existing vertices of the mesh within the faces. The
refinement concludes with flipping all the edges of the result-
ing mesh. The existing vertices of the mesh are repositioned
by a linear combination of their neighbours, which ensures a
smooth surface at the limit [7].

Because the new vertices are inserted on faces, the mesh is
conforming when it is adaptively subdivided.. The bottom row
of Fig. 7 demonstrates one level of adaptive

√
3-subdivision.

When a single face is refined, its adjacent neighbours are
included in the subdivision.

(a) Interior edge (b) Exterior edge

Fig. 9. Adaptive 4-8 Subdivision. A new vertex is inserted on an interior
edge on the left mesh. It bisects the pair of faces incident to the edge. If the
new vertex is inserted on the exterior edge, the two faces adjacent to it need
to be refined first as in the right mesh.

Similarly, the adaptive refinement of 4-8 subdivision does
not require post-processing to remove cracks. The 4-8 sub-
division operates on 4-8 triangle meshes, shown in Fig. 8,
that consist of vertices with valences four and eight. A pair
of triangles, forming a square block divided along one of its
diagonals, is called a basic block. An interior edge is the
common edge to the two triangles forming a basic block. All
other edges are exterior edges. A new vertex is inserted on the
interior edge at the barycenter of the basic block. The vertex
is connected to the vertices of the basic block, bisecting its
faces. The new position of an existing vertex is computed as
an average of its old position and barycenter of the vertices
sharing an exterior block edge.

In adaptive 4-8 subdivision, the mesh is always conforming
because both faces incident to the interior edges are bisected.
If a new vertex is inserted on an exterior edge, then an extra
step of subdivision is required. Fig. 9 shows both cases of
inserting a new vertex on interior and exterior edges.

Our incremental approach can be applied to the above
triangle subdivisions, and it can produce better triangle dis-
tributions. However, since they are not commonly used in
practical applications and because they have a reasonable
adaptive scheme, we do not see a strong motivation to discuss
the incremental approach for them.

III. ADAPTIVE SUBDIVISION

In this section we review the adaptive subdivision schemes
that have the 1-to-4 triangle split refinement. First, some
methods of determining which regions of the mesh to sub-
divide are discussed. Then, a simple algorithm for removing
cracks is introduced. This method has two drawbacks that
can be avoided with more complicated algorithms, which we
discuss here.

A. Selection Criteria

In adaptive subdivision, one must decide on which areas
of the control mesh to subdivide. This decision is either
determined by the application or is specified directly by
the user.

To render or visualize subdivision surfaces, the control mesh
is subdivided until it is a sufficiently good approximation of the
limit surface. Subdividing the entire mesh grows the number
of faces exponentially. To reduce the complexity of the model
in real-time applications, an approximation of the limit surface
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Fig. 10. Adaptive subdivision based on Gaussian curvature. Vertices with
computed high curvature are selected for refinement.

is computed by adaptively subdividing the mesh. There are a
number of methods for computing an approximation of the
limit surface. One is to calculate the error of the mesh by
comparing it to its limit surface. In Loop subdivision, the
position of vertex vi at the limit is

vi→∞ = χvi + α

n−1
∑

j=0

vi
j , (11)

where

χ =
1

3

8
β + n

, (12)

and α and β are defined in (2) and (3)[4]. If the approximation
error εi =

∣

∣vi − vi→∞
∣

∣ is larger than a predefined threshold,
then the vertex vi and its neighbours vi

j are selected for
adaptive subdivision.

Another criterion for deciding which areas to subdivide is
the curvature of the surface. Higher curvature regions of the
mesh M i require more refinement than flat areas. Generally,
high curvature areas contain more details. The local curvature
of the mesh at vertex vi can be computed using discrete
Gaussian curvature analysis [12]. Fig. 10 shows adaptive
subdivision of a control mesh based on discrete Gaussian
curvature. Dihedral angle, the angle between the normals of
adjacent faces, is also used as a simple approximation of
surface curvature.

(a) User selected region (b) Adaptive subdivision

Fig. 11. Adaptive subdivision of user selected area

In real-time applications, other factors such as visibility,
distance to the viewer, and the pixel area of faces are used
to tune the selection algorithm. Isenberg, Hartmann and Knig
present a general framework for the selection algorithm [13].
The adaptive subdivision area is defined as a set of faces that
satisfy a Degree of Interest (DoI) function which may or may
not be based on the geometric properties of the model. For
example, to generate smooth silhouettes, the DoI can be set
to take the normal of each face and the view vector into
consideration, and subdivide all the faces that share edges
on the silhouette boundary. In non-photorealistic rendering
methods that are based on edge size [14], the selection area
can be determined by setting the DoI to the size of the
coarse edges.

In modeling applications, users may need control over the
level of detail of the model. Artists may want to emphasize
part of a scene by increasing the detail of that area. Adding
features to the mesh generally requires an increase in the level
of detail where the features are being added. In these cases the
user selects areas of the mesh that are then subdivided. Fig. 11
shows adaptive Loop subdivision of a user defined area.

The target subdivision depth is either controlled by the
user or by the application during run-time. In some adaptive
subdivisions, the depth at which the vertices best approximate
the limit surface are precomputed and then the mesh is
subdivided to the preset depth [15]. In our case, the error in the
mesh is computed at each step and the subdivision is stopped
once this error reaches a threshold.

B. Handling Inconsistencies

Simple Triangulation: As mentioned earlier, subdividing a
subset of the faces creates cracks on the mesh. These cracks
are due to odd vertices on the edges shared by faces at differ-
ent subdivision levels. The neighbourhood of the vertices is
incomplete and when they are repositioned a crack is created.
Amresh, Farin and Razdan propose a simple triangulation
method that splits the neighbouring faces into two, three or
four faces depending on the number of odd vertices [16]. As
shown in Fig. 12, for each odd vertex, a bisection of the face
with lower subdivision depth removes the crack. We call to
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(a) Selected face (b) Cracks

O−vertex

T−vertex

(c) Edge insertion

Fig. 12. Adaptive subdivision of one triangle and bisection of its neighbours
to remove cracks

this odd vertex a T-vertex. The opposite vertex that the T-
vertex connects to is an O-vertex.

While this simple triangulation method removes cracks effi-
ciently, it has some undesired side-effects. First, it changes the
connectivity and valence of odd vertices. This not only alters
the limit subdivision surface, but also reduces its smoothness
to G1. Second, O-vertices have a different subdivision depth
than the even vertices of the selected area. Therefore, as shown
in Fig. 13, the even vertices are not repositioned properly if the
selected area is subdivided again. Last, ignoring the irregular
connectivity of T-vertices, repeated subdivision and simple
triangulation of the selected area produces high valence O-
vertices. High valence vertices lead to long faces which create
ripple effects on the subdivision surface as show in Fig. 14.

Red-Green Triangulation: Another method of removing
cracks by inserting edges into the mesh is the red-green
triangulation method of Bank, Sherman and Weiser [17]. This
method was developed to allow adaptive refinement of meshes
in finite element analysis. A mesh is used for approximating
systems of equations in numerical analysis applications. When
better approximations are required, the mesh is refined by
splitting each edge to half and connecting the new vertices.
This refinement operation is the same 1-to-4 refinement of
Fig. 3. The exponential growth in the number of elements of
the mesh leads to high computation load. Adaptive refinement
is used to obtain good approximations while maintaining a
reasonable number of faces. The adaptive subdivision leads
to cracks and non-conforming mesh. If the mesh is non-
conforming complex matrix assembly is required, so it is
preferable to have a conforming mesh [6].

The red-green algorithm is as follows. Faces with one crack
are bisected (green triangulation), and faces with more than
one crack per edge are split into four (red triangulation). In
other words, T-vertices, O-vertices, and the edges connecting
them are temporary. Therefore, the connectivity of the selected
region is unaffected. In addition, high valence extraordinary
vertices are avoided. Fig. 15 shows red-green triangulation
step by step. The consequence of red triangulations is that
the subdivision depth difference of triangles incident to an
edge is never larger than one. Therefore, the produced mesh is
balanced, but these properties are not sufficient in the context
of adaptive subdivision. In Loop subdivision, the new position
of even vertices is computed as a weighted average of its
neighbours as in (4), and all these vertices must be at the

(a) Adaptive (b) Regular

Fig. 13. Adaptive subdivision with simple triangulation on the left compared
to subdividing the complete mesh on the right

(a) High valence vertex (b) Ripple effects

Fig. 14. Ripple effects appear on Loop subdivision surfaces due to high
valence vertices
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(a) Coarse mesh (b) Subdivision

(c) Red-green triangulation (d) Subdivision

(e) Red-green triangulation (f) Subdivision

Fig. 15. Red-green triangulation: the green triangulation step removes cracks
and the red triangulation refines faces with more than one crack per edge

same subdivision depth. The even vertices have neighbours
from different subdivision levels in red-green triangulation.

Restricted Mesh: As we discussed in Section II, to avoid
any changes to the adaptive subdivision surface, odd and even
vertices must be at the same subdivision depth as their neigh-
bours. Zorin, Schröder and Sweldens call a mesh that satisfies
this criterion a restricted mesh [18]. To obtain a restricted
mesh, faces are constructed so vertices of the selected area
and their neighbours have the same subdivision depth. Fig. 16
demonstrates a case where red-green triangulation is used to
avoid cracks. While T-vertices are removed from the subdivi-
sion area, even vertices have neighbouring vertices from dif-
ferent subdivision depths. A hierarchical data structure is used
for reconstruction of faces at different subdivision depths [18].

A Combined Algorithm: While red-green triangulation han-
dles the connectivity issues of adaptive subdivision, mesh

0

1
1

1
11

0

0 0

11
11

1

1

0 0

1 1 11

(a) Red-green triangulated

1
11

1

1

1

0

1

11

0

00

0

11

1 1
1 1

1 1

1 1
11

11 1 11

1 1

1

0

1 1

1
1

11
1

0 0

0

(b) Restricted

Fig. 16. Subdivision of highlighted faces to satisfy the mesh restriction
criterion. The numbers represent subdivision depth of vertices.

(a) Restricted red-green (b) Regular

Fig. 17. Red-green triangulation with mesh restriction compared to when
the entire mesh is subdivided
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restriction addresses the correct computation of odd and even
vertices. These two methods can be combined to obtain proper
adaptive subdivision. Before subdividing the mesh, bisected
faces are checked to see whether they need to be split into
four. After red-green triangulation, the mesh is checked to
satisfy the restriction criterion and if needed, some faces are
subdivided (see Fig. 16). The selected area is subdivided and
cracks are removed using green triangulation. Fig. 17 shows
two levels of adaptive subdivision with red-green triangulation
and mesh restriction.

This algorithm achieves the goals that we set in the intro-
duction of this paper but it is not efficient nor simple. For
each subdivision, three passes over the selected area must be
made. One pass performs the red-green triangulation. New T-
vertices may be created during this phase, therefore it must
be recursively repeated until no new T-vertices are created. A
second pass ensures mesh restriction, and finally the selected
area is subdivided. If a large area is selected, this process
becomes inefficient as some faces are bisected and then split
into four. Incremental subdivision also achieves these goals
but it is efficient and simple to implement.

IV. INCREMENTAL SUBDIVISION

A. Formal Description

We now describe our incremental method of adaptive subdi-
vision for triangle meshes. This method efficiently generates,
from the selected regions of the mesh, adaptive subdivision
surfaces that are the same as when the entire mesh is subdi-
vided. The resulting surface changes gradually in resolution
from coarse to the fine areas.

Let V = {v0, v1, . . . , vm−1} be the vertex set of the current
mesh. Let S be a subset of V . We wish to adaptively subdivide
S such that the limit surface generated from S is exactly the
same as when V is subdivided. To do this, we expand the
selected set S to a new larger set of vertices and then we
subdivide this larger set.

More formally, at each subdivision level, expand S to Er(S)
by including the vertices of V that are inside the r-ring
neighbourhood of at least one vertex of S

Er(S) =
⋃

v∈S

Nr(v), r > 0, (13)

where N r(v) denotes the r-ring neighbourhood of v. There-
fore, w ∈ V is in N r(v) if and only if there is a path from
v to w with maximum r edges. In graph theory terms, the
distance of v and w must be smaller or equal than r. Fig. 18
illustrates E1(S) and E2(S) expansion of a selection region of
the mesh. Next, subdivide Er(S) and use simple triangulation
to remove cracks. Let S

′

be the new selected area that is
the result of subdividing S. Fig. 19 illustrates two steps of
incremental subdivision using E1(S) expansion. Fig. 20 shows
incremental Loop and Butterfly subdivisions of a model.

Adaptive subdivision of Er(S) produces a limit surface
from S that is exactly the same as when the entire mesh
is subdivided. The reason for this is that T-vertices and O-
vertices lie outside Er(S), so the connectivity of vertices
within S remains unchanged. In addition, vertices of S

′

and
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Fig. 18. One and two ring neighbours of selected vertices. Each number
shows the distance of the vertex to the selected region.

their neighbours are at the same subdivision depth because
Er(S) includes the r-ring neighbours of S in the subdivision
process. The limit surface of S is not changed due to the
adaptive subdivision.

Incremental subdivision spreads O-vertices outside the se-
lected subdivision area. Since odd vertices correspond to
edges, an r-ring neighbourhood before subdivision corre-
sponds to 2r-ring neighbourhood after subdivision. T-vertices
from adaptive subdivision of Er(S) are 2r units away from S

′

.
O-vertices are 3r units away. As shown in Fig. 19, O-vertices
created from incremental subdivision of S

′

are different from
O-vertices generated from incremental subdivision of S. This
prevents the incremental subdivision algorithm from producing
high valence O-vertices.

In addition, 3r-ring neighbours of S
′

are always one level of
subdivision lower than its 2r-ring neighbours. The adaptively
subdivided mesh is balanced, and a surface is created that
gradually increases in subdivision depth from the coarse to
the incrementally subdivided areas. Fig. 21 demonstrates this
anti-aliasing effect.

A larger r value includes a bigger neighbourhood of the
selected area, and leads to a smoother transition from the
coarse to the fine regions of the mesh. Fig. 22 demonstrates
incremental subdivision with r = 1 and r = 2 expansions.
The increased transition area from coarse to fine is beneficial
for the rare occasion that a selected region of a coarse mesh
is subdivided many times. In practice, a few refinements are
sufficient to obtain a smooth surface, so E1(S) expansion is
used in most cases.

The same Er(S) expansion for the interior of the mesh is
be used to subdivide a selected region near or on the boundary
of the mesh. The expansion includes r-ring neighbours of the
selected region, but up to the boundary of the mesh. Therefore,
the incremental method can easily be applied to open meshes.
Fig. 23 illustrates incremental subdivision of a region on the
boundary of the mesh.
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(a) Incremental (b) Regular

Fig. 19. Incremental subdivision on the left. The dots indicate selected
vertices for subdivision. The thick edges indicates the boundary of E1(S),
and the letters show T- and O-vertices.

(a) Control mesh (b) Loop (c) Butterfly

Fig. 20. Incremental Loop and Butterfly subdivisions of a coarse model. The
selected area is determined by surface curvature.

(a) Selected face (b) Adaptive (c) Incremental

Fig. 21. Smooth transition from coarse to fine areas of incrementally
subdivided mesh

(a) Coarse mesh (b) r = 1 (c) r = 2

Fig. 22. Four levels of incremental subdivision with two different r-ring
expansions

B. Comparison

We will now compare incremental subdivision to red-green
triangulation with mesh restriction. Fig. 24 shows these two
algorithms side by side. For r = 1, red-green triangulation
and incremental subdivision are very similar. Red-green trian-
gulation produces fewer faces by carefully triangulating faces
containing cracks. In contrast, incremental subdivision always
refines neighbouring faces of the selected area, and therefore
creates more faces.

In practice, red-green triangulation is effective when small
isolated areas of the mesh are selected for subdivision. In these
cases the number of green and red triangulations are relatively
small. Incremental subdivision is more efficient for large

(a) Selected area (b) Incremental subdivision

Fig. 23. Incremental subdivision of a region near the boundary of a strip
mesh
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(a) Incremental (b) Restricted red-green

Fig. 24. Incremental subdivision on the left compared to red-green triangu-
lation with mesh restriction on the right

randomly selected areas with overlaps. Adaptive subdivision
with red-green triangulation and mesh restriction involves two
additional steps compared to incremental subdivision. Before
the subdivision step, green triangulated faces must be checked
and red triangulated if it is determined that they will have
more than one crack after the subdivision. Since a face split
may create new T-vertices, this algorithm must recurse until
no faces are bisected. Some faces may be triangulated multiple
times after one subdivision. After red-green triangulation, the
selected area must be analysed and processed to ensure it
satisfies the restriction criterion. If faces have to be subdivided,
red-green triangulation must be performed. In incremental
subdivision, the expansion Er(S) can be performed quickly
if neighbours of vertices can be directly accessed.

Red-green triangulation with mesh restriction also requires a
complex data structure [7]. To reverse the green triangulations,
the previous state of vertices and faces are needed, so it is im-
plemented using a hierarchical data structure. The incremental
subdivision can be implemented with a linear data structure
that operates entirely within the graph space of the mesh.

Fig. 25 compares the four methods of subdividing a model:
regular, simple adaptive, red-green triangulation with mesh

restriction and incremental. Adaptive subdivision with simple
triangulation is included as it is used in some cases, even
tough it does not produce a correct limit surface. After two
subdivision steps, incremental subdivision produces about 4%
more faces than red-green triangulation with mesh restriction
and about 7% more than simple triangulation. This small
increase in the number of faces is outweighed by the gain
in efficiency as well as simplicity of incremental subdivision.

To avoid extraordinary vertices when the mesh is adaptively
subdivided, the adjacent faces to the subdivided area must also
be subdivided [11]. By induction, the whole mesh would have
to be subdivided. Therefore extraordinary vertices are unavoid-
able in adaptive subdivision. Extraordinary vertices affect the
shape of the limit surface and reduce its smoothness. In the
simple triangulation method, extraordinary vertices affect both
the selected region and the area outside of it. Incremental sub-
division pushes the extraordinary vertices outside the selected
region. If the region outside the selected area is subdivided
after incremental subdivision, its limit surface is changed due
to the extraordinary vertices. Red-green triangulation avoids
extraordinary vertices both inside and outside the adaptively
subdivided region.

Both T-vertices and O-vertices are extraordinary vertices.
T-vertices always have valence four, but need to be connected
to an O-vertex to produce a conforming mesh. Therefore,
they generally have valence five. In the simple triangulation
method, the same O-vertices may complete the neighbourhood
of new T-vertices. The number of extraordinary O-vertices is
low, but they can have high valence, which is undesired. In
comparison, O-vertices in incremental subdivision are spread
outside the selected subdivision area and have low extraordi-
nary valence. If it is required for the area outside the selected
region to be unaffected by the adaptive process, then it should
be selected for inclusion in the adaptive subdivision. The
most common case, where the region outside the adaptively
subdivided area is also subdivided, is when the entire mesh
is refined after a few adaptive subdivisions. In these cases,
we recommend subdividing the entire mesh first and then
adaptively refining the regions of interest.

V. RESULTS & APPLICATIONS

A. Implementation

In order to implement incremental subdivision, we con-
sidered the half-edge data structure [19] and the vertex-
vertex systems [20] as two powerful mesh representations.
Both representations are suitable and efficient for implementa-
tion of subdivision algorithms. However, the most significant
operation of incremental subdivision is forming the Er(S)
expansion in (13). Efficient access to the neighbourhood of
the selected vertices is crucial. The vertex-vertex systems,
described below, allows direct access to the neighbourhood
of each vertex. Therefore, in this work we used this mesh
representation to implement subdivision.

The vertex-vertex systems is a data structure based on graph
rotation systems. A graph rotation system associates each
vertex of a polygon mesh with an oriented circular list of its
neighbouring vertices. The collection of the vertices and their
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1420 faces 1420 faces 1420 faces 1420 faces

5680 faces 2880 faces 2880 faces 3420 faces

22720 faces 8536 faces 9134 faces 10148 faces
(a) Regular (b) Simple triangulation (c) Red-green w/restriction (d) Incremental

Fig. 25. Comparison of adaptive subdivision schemes. Incremental subdivision produces more faces than simple triangulation and red-green triangulation
with mesh restriction, but it is more faster and more efficient.
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(a) Selected edges

(b) Incremental subdivision

(c) Red-green triangulation with mesh restriction

Fig. 26. The selected edges are tagged as sharp and subdivided using incre-
mental subdivision in the middle row as well as the red-green triangulation
method with mesh restriction in the bottom row.

adjacency information completely represents the topology of
a 2-manifold mesh.

In order to implement the 1-to-4 refinement of Loop and
Butterfly subdivisions, an odd vertex ei+1 is inserted on each
edge of the vertices of the mesh M i if the edge is not already
split . These edges are then connected to each other (see
Fig. 5) to form mesh M i+1. Note that in Loop subdivision, the
vertices of mesh M i must also be repositioned according to
the Loop mask. Adaptive refinement is implemented similarly,
but edges are split only if both of their vertices are selected.
The incremental subdivision is implemented by first forming
the Er(S) expansion. For r = 1, forming Er(S) is straight-
forward, but for r > 1, a depth search or breath search of r

neighbours of the selected vertices is needed.

B. Applications

We have developed a number of applications using the
incremental method. One application is creating high quality
surfaces without exponentially increasing the number of faces.
Figures 1, 10, 20, and 25 are examples of adaptive subdivision
for efficient surface approximation.

Another application of incremental subdivision is adding
features to a model. To add creases some edges are selected,
tagged as sharp, and then subdivided. If the entire mesh

(a) Coarse mesh (b) Tagged edges

(c) Incremental subdivision (d) Fine mesh

Fig. 27. Creating wrinkles using incremental subdivision of sharp edges: the
forehead of the head model (a) is first incrementally subdivided to allow more
controlled editing (b). A series of edges are tagged as sharp and incrementally
subdivided (c). The entire mesh is then subdivided to produce a high resolution
model (d).

is subdivided the model becomes too complex. Adaptive
subdivision results in a mesh with a manageable number of
faces. If the red-green triangulation approach is used, then the
faces sharing these edges must be found and subdivided. Dur-
ing red-green triangulation some bisected faces may require
regular refinement. Finally, the restriction criterion must be
enforced. Incremental subdivision includes adjacent faces to
crease edges with the expansion Er(S) and does not require
further post-processing of the mesh. Allowing the user to mark
edges provides an intuitive user interface for adding seams and
creases to the model. The user selects and tags edges with the
mouse or a tablet pen and the incremental algorithm handles
the subdivision. As shown in Fig. 26, incremental subdivision
produces a mesh almost identical to red-green triangulation
with mesh restriction. Fig. 27 shows an example of adding
sharp features to a model.
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(a) Coarse mesh (b) Edited

(c) Fine mesh (d) Zoomed on the eye

Fig. 28. Adding eye details to the head model. The eye lids are tagged as sharp and incrementally subdivided. Then the pupils are added by incrementally
subdividing a circle region inside the eye.

To add details to a coarse model, such as eye details to
a human face, the artist can select regions of the mesh and
adaptively subdivide them. Incremental subdivision allows the
artist to gradually increase the resolution of the selected area.
Fig. 28 shows an example of adding an eye to the head model
used in the previous figures.

Fig. 29 shows three frames from subdivision using a pen that
allows users to interactively refine the model by drawing on it.
As the pen moves over the mesh, the faces are incrementally
subdivided. The slower the pen moves, the more the area
underneath it is refined to reflect more details on the surface.

VI. CONCLUSION

Adaptive subdivision allows us to create surfaces with
different subdivision depths by subdividing selected areas of
the input mesh. The simple triangulation method and red-green
triangulation produce surfaces with undesirable properties.
Using restricted meshes, it is possible to adjust the red-green

triangulation method to obtain better behaved adaptive subdi-
vision surfaces. However, this algorithm is not efficient and it
is complicated for implementation. We introduced incremental
adaptive subdivision for triangle meshes. It produces surfaces
that have proper connectivity and geometry with a gradual
change in subdivision depth between coarse and fine areas.
Based on our comparison, incremental adaptive subdivision
is more efficient than other methods while it is still simple
to implement and can be effectively used in both modeling
and rendering.
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(a) Frame 17 (b) Frame 35 (c) Frame 85

Fig. 29. Three frames from pen based real-time incremental subdivision. As the pen moves over the ears and eyes of the figure head, the faces are
incrementally subdivided.
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