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Abstract. Modern area preserving projections employed by cartogra-
phers and geographers have closed forms when transitioning between the
sphere and the plane. Inversions - from the planar map to the spherical
approximation of the Earth - are slower, requiring iterative root finding
approaches or entirely undetermined. Recent optimizations of the com-
mon Inverse Snyder Equal Area Polyhedral projection have been fairly
successful, however the work herein improves it further by adjusting the
approximating polynomial. An evaluation against the original and im-
proved optimizations is provided, along with a previously unexplored
real-time analysis.
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1 Introduction

The construction of maps which preserve area has long been discussed within
the cartographic community. Such a property is particularly desirable for the sci-
entific community. Researchers exploring migratory or meteorological patterns,
disease proliferation and control, and many other fields of study rely on accu-
rate areal and regional information. Even business analysts, exploring optimal
market demographics and product distribution benefit from area preserving rep-
resentations of the Earth. These digital environments act as models, or virtual
cyberworlds, upon which important analysis may be performed. As such, when
representing their spatially-aware data, it is imperative to preserve area when
translating between the spherical and planar maps these cyberworlds maintain.

Traditionally projections transform a point p on the Earth, to a point p’ on
the map (Figure 1), often preserving a variety of properties. Due to the spheric-
ity of the Earth, area and angle - or shape - are unable to be simultaneously
preserved [2]. The objective, then, becomes the absolute preservation of area,
while reducing shape distortion. In this way, the resultant data appears to be
of the correct form, but guarantees accurate regional calculations. Through the
novel use of a polyhedral surface, rather than a flat map, Snyder’s [14] polyhe-
dral projection is extremely successful at reducing angular distortion, and has
been recommended for equal area projections [8].

The inverse process - transforming from the planar representation to the
sphere - is of particular important, especially when working within a digital
environment. The visualization process tends to work with the planar maps and



images, but prefers a spherical visualization - as is the case for Google Earth [4].
As a result, the inverse projection becomes particularly important.

Efficiency of both the forward and inverse projection is of extreme impor-
tance. For the visualization of a single lake, for example, a thousand points may
require projection. If hundreds of lakes are evaluated, over a million points must
be transformed. Park boundaries, roads and cities may also be projected - often
simultaneously - to meet the needs of businesses, military planners, and scien-
tific researchers. An efficient approach must be taken to meet their real-time
needs as motivated by geoscience visualization companies [12]. Consequently, an
operationally effective and memory efficient approach for an inverse projection
is desired.
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Fig. 1. Projection from the Earth to Planar Map and Inverse (Right: Blue Marble,
NASA [11], Left: Mercator Projection, Google Maps [5])

Snyder’s equal area approach defines both a forward and inverse projection.
His unique approach - employing a polyhedron - and its resultant reduced angular
distortion, makes it highly desirable within the modern visualization community.
Area is maintained by applying the Lambert Azimuthal Equal Area projection [9]
to each of the respective faces, and then adjusted slightly to ensure accurate
edge matching. Through a collection of trigonometric equations, function F(p)
is defined. Its inverse, F~!(p), is computed by Snyder as a direct reversal of the
forward projection. Unfortunately, due to the trigonometric equations, a non-
linear system must be solved. Since neither Snyder nor traditional evaluations are
able to construct an analytical or closed form, numerical technique is employed.

As a consequence of this non-linear system, the computational time of solv-
ing this non-linear system is a large bottleneck. While the closed form of the
forward projection has a reliable computation time by calculating each of the
equations only once, the numerical technique for finding solutions for the inver-
sion causes an indeterminate number of repeated calculations before converging
to a desirable solution. Since these iterations are applied for each of the poten-



tially millions of inverse projection calls, the visualization and analysis process
can be immensely impeded.

Few other approaches preserve area, while reducing shape distortion as suc-
cessfully as Snyder does. Leeuwen et al.’s Slice and Dice projection [10] offer a
potential alternative, however it does not define an inverse process, let along a
computationally efficient one.

Harrison et al. [7] were able to improve Snyder’s inverse process by reducing
the iterations to a one dimensional approximating curve. This improved initial
estimate reduced the convergence time, while still retaining precise area. An
alternative direct replacement of the iterative process with this approximating
curve resulted in a 45% faster calculation, with a displacement error of 5.9 m, and
areal error of 0.7 km?. Expanding on this success, we have evaluated alternative
approximating curves, and analyzed the real-time improvements.

We start with a brief discussion of the Snyder equal area polyhedral projec-
tion, and its inversion. The optimizations from Harrison et al. are reviewed. Our
expansions are then discussed. The different polynomial approximating curves
are evaluated, a real-time analysis is explored, and finally results are presented
accordingly.

2 Background

As computers have improved in power over the years, they have increasingly
been incorporated into different fields of study. As late as 1998, former US Vice
President, Al Gore proposed a Digital Earth framework [6]. The objective has
been to harness the capabilities of computing power to visualize and analyze the
Earth’s surface directly upon a 3D spherical representation. Consequently, pla-
nar input, such as satellite imagery, field surveys and other such 2D data must
be transformed into their respective spherical coordinates. While one way to
accomplish this is through the employment of accurate Geographic Information
System protocol, this is not applicable to large regional input, such as satel-
lite photography. Instead, data must be projected to the appropriate position.
These projections, between the planar map and the Earth, range in shape and
style, objective and aesthetic, developed continuously over the last two thousand
years [15].

These cartographic projections are thereby tasked with overcoming the prob-
lems faced with spherical to planar transference. In particular, the inability to
simultaneously preserve angle and area results in projections constructed and
employed based on the desired qualities of the specific task [2]. Projections are
often selected based on the need for preservation of area, preservation of shape,
distance and positional accuracy, and an ease of computation [13]. With the
prevalence of computers, this ease of computation becomes less critical to cartog-
raphers. However, within a Digital Earth framework, requiring immense quantity
of data, and a desired real-time analysis, computational complexity remains of
high importance.



Researchers and analysts exploring regional-based information, require preser-
vation of area. Equal area projections have been documented since Ptolemy’s
Geographia manuscripts in the second century [15], often incorporating other
desirable characteristics. The Werner projection of the 16th century, for exam-
ple, is able to preserve a collection of longitudinal distances, at the expense of
severe shape distortion [15]. The Lambert Equal-Area projections - azimuthal
and cylindrical - present the Earth’s surface in a less distorted rectangular for-
mat. While still employed today [3,16], it is unable to achieve the distance
preservance of Werner’s. The Mollweide projection retained areal equivalence
while reducing the angular distortion within the interior through its ellipsoidal
shape [15]. Unfortunately, distortion is still exhibited along the boundaries and
non-uniform across the projection.

Fig. 2. Icosahedral Mapping Using Snyder Equal Area Projection [14]

As aresult of employing a polyhedral surface for his projection, at the expense
of a discontinuous flattened map (Figure 2), Snyder [14] was able to reduce the
angular distortion due to the polyhedron’s close approximation to a sphere.
For example, an icosahedron achieves an angular deformation of less than 17.3°
and a scale variation of less than 16.3%. Furthermore, the employment of a
polyhedron more readily facilitates its visualization since a polyhedron, or mesh-
based, approach is commonly employed within computer visualization.

Alternative approaches have been presented. Leeuwen et al. [10], for exam-
ple, later demonstrated an alternative equal areal polyhedral projection, more
uniformly distributing the angular deformation across the surface. Their Slice
and Dice approach is initially constructed comparably to Snyder’s, but instead
of employing a modified Lambert Azimuthal equal area projection, they par-
tition the surfaces so as to preserve areal ratios. As a result, the distortion is
less noticeable, eliminating discontinuities and reducing cusps. Unfortunately, an



inverse projection is neither presented nor readily determined - a necessity for
computational visualization.

In order to guarantee a real-time visualization, it is important to discuss
what it means for a visualization to be real-time. For an interactive system,
which responds readily to an individual’s input, a visualization must redraw itself
at a minimum rate of 24 frames per second (fps). For 24 fps, this corresponds
to 0.04167 seconds of screen time per frame. For items that are drawn on the
screen, it then becomes a matter of how many items, and for what intensity of
computational processing are we able to achieve within the 0.04167 seconds. A
review of the original Snyder inversion process is explored, and the number of
inverse calls possible within the 0.04167 seconds is determined.

3 Snyder’s Polyhedral Projection

An initial discussion of Snyder’s polyhedral projection is presented. This is fol-
lowed by the inversion and its drawbacks.

3.1 Snyder Projection

Snyder’s projection defines a function F mapping the spherical point p and
computing its position on the polyhedron. To do so, the Lambert Azimuthal
Equal-Area projection is centered upon each of the respective faces. In this
Lambert Azimuthal Equal-Area projection, a plane is set tangent to the sphere,
and points are projected along radial arcs down to this plane. For the Snyder
projection, it must be modified for the polyhedral employment to ensure precise
edge matching. F' is construct by first decomposing the polyhedral faces into
their smallest symmetric region - always a right triangle (Figure 3). Then, the
area on the plane and on the sphere are made equivalent through a scaling factor
between the radius of the sphere, and the radius of the polyhedron’s inscribing
sphere. The third step defines a triangle on the polyhedron whose area exactly
matches that of a spherical triangle bounded by point P. Finally, the new point
P’ is positioned along this triangle’s edge while maintaining areal scale.

Figure 3 visualizes the triangles and their variables. As illustrated, the main
face is divided into three subtriangles, and then further halved into right trian-
gles. Such a division may be applied to any regular polygon, and Snyder includes
the equations for alternative sphere-circumscribing polyhedra.

Figure 3 additionally illustrates several angles and vertices used through the
projection of point P to point P’. Spherical triangle AABC and polyhedral
triangle AA’B’C’ are constructed from the underlying polyhedral face with A,
A’ the centroids, B, B’ the vertices, and C, C’ each edge’s midpoint. During
area preservation, radius R of the spherical polyhedron is associated with radius
R’ of the sphere circumscribing the polyhedron. D is defined using a great circle
arc from A through P, intersecting BC'. The resulting AABD, with angles /G,
/H and / Az, determine A A’ B’ D’ with the same area. Angle or azimuth / Az’ is
used to determine AA’B’D’, which in turn computes point D’. In the final step,



Fig. 3. Spherical and Planar Icosahedron with Symmetric Decomposition (Red line
indicates the radius)

the ratios between arc length ¢ = AD and edge length d’ = A’D’ fix P’ in place.
It should be noted that angles /@ and /G are fixed for a given polyhedron.
These values are listed in Snyder’s paper [14].

Having defined these variables, they can then be used to more precisely recre-
ate the Snyder projection. The initial formulation of Snyder’s scaling based on
the radius R and R’ is well discussed by both Snyder [14] and Harrison et al. [7].
The subsequent step ensures the point retains area during throughout the pro-
jection, and therefore must position it precisely within the planar triangle. To do
s0, we must position point D - which may be represented through the calculation
of /H - from the Spherical Law of Sines and Cosines as follows:

LH = arccos(sin Az sin G cos g — cos Az cos G), (1)

where ¢ is the arclength between AB. Consequently, the area of AABD is:

(Az + G+ H — 180°)7 R
180° '

(2)

Aapp =

To associate triangle AA’B’D’ with its circumscribing radius, and angles of
interest, Snyder defines the area as:



(R’ tan g)% tan Az’ 3)
2(tan Az’ cot © + 1)

Since we need Aapp = Aa g pr, we transform equations 2 and 3 to define our
planar azimuth, Az’

AA'B'D’ =

Az = arctan(2AABDR/2 tan® g — 244D cot o).

The final step positions point P’ along this calculated azimuth, Az’ so that it
preserves areal scale. The proportionality factor is described in detail by Sny-
der [14] and Harrison et al. [7]. At this stage, the planar triangle coordinates
(z,y) for our projected point is determined.

It should be mentioned that the calculations presented by Snyder are strongly
tied to the specific layout of the flattened polyhedron. A visualization of the
layout, along with a table of offset coordinates are provided within his paper.

Though this forward projection requires several trigonometric calls, it is oth-
erwise a straightforward closed form.

3.2 Inverse Snyder Projection

The inversion reverses the forward projection, finding the spherical coordinates
of P given the coordinates of P’ on the polyhedron. From the forward projection,
symmetric extraction and radius scaling requires nominal modification. The final
reversal of the forward projection - positioning P along great circle arc AD -
is also straightforward. The complexity resides within the calculation of Az. In
matching the areas of AABD and AA’B’D’, we have Az’ and must compute
Az. Thus, we can define the area of AA’B’'D’ as:

R?tan?g
2(cot Az’ + cot O)°

Setting this equal to the area of AABD), from equation 2, it can be noted that
Az is involved linearly and trigonometrically, through the reliance of /H on
the arccos of sin Az and cos Az by equation 1. Solving for Az results in a non-
linear equation. Since a closed form is neither proposed nor easily determined,
Snyder suggests the Newton-Raphson iterative approach to deduce an adequate
value [14]. This approach computes the derivative and uses it to iteratively find
an improved approximate solution. Consequently, the following equations are
used:

AA/B/D/ =

]. OA ’ ’ ’
g(Az):%—G—H—Aszoo (4)
, _ cosAzsinGeosg +sinAzcosG
g(42) = A ! )
Ady = —9142) (6)




On each iteration, AAz is added to Az until AAz goes below some pre-determined
threshold, e.
These calculations are specified in Algorithm 1.

Algorithm 1 Inverse Snyder Calculation

Require: face, Az’
lat <0
lon <0
// Convert Az'to symmetric subregion (not shown)
// Determine initial estimate for Az
Az + Az'l2 )
Ao « Simiete
01
// Iterate using Newton-Raphson
while 6 > ¢,¢ ~ 0 do
F(Az) + 2206 — G — H — Az +180°

R
FI(AZ) ¢ cos Az sinG(;(i):%jsin Azcos G 1
F(Az)
0 sy
Az Az+6

end while
// Unwrap Az, so it falls in the correct symmetric region of the face (not shown)

Due to the non-linear equation, the inverse projection requires a number
of iterations to converge on a value within a required accuracy. Furthermore,
computations within the iteration process are often repeated and therefore re-
dundant within a formal implementation. These repetitions have been identified
and removed by the previous body of optimization work.

4 Optimizations

With the lack of closed form, and resulting indeterminate iterations required for
root-finding, numerous optimizations were applied by Harrison et al. [7], to speed
up the process. In a graphical application where inversion calls occur millions of
times within a single screen of information, slow implementations impede real-
time requirements. While an order of magnitude in reduction is preferred, even
a constant reduction is beneficial.

These optimizations continue to be applied to an icosahedron. Application to
other sphere circumscribing regular polyhedra is possible, but beyond the focus
of the work.

Three types of optimizations were performed: operation reduction, curve fit-
ting and, lastly, iteration removal. The operation reductions employed common
computer science approaches, involving the identification and temporary storage
of repeated calculations. Furthermore, the simultaneous calculation of sin and
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Fig. 4. Azimuth Before Against Azimuth After Iterative Newton Raphson

cos for angles which undergo both processes is improved through sincos direc-
tives. Such directives are capable of performing both computations in the time it
takes to evaluate one separately. The improvements were classified as trivial, and
were not, and continue not to be evaluated for improvements in optimization.

The more insightful optimization involved the application of a curve fitting
approach. In this way, the Netwon Raphson iterations were initiated with a more
reliable estimate. It was observed that the formulae applied to Newton Raphson
were entirely dependant upon the input azimuth. When six thousand evenly
distributed values within the possible range of the azimuth (up to 60° on an
equilateral icosahedron face) were plotted against Newton Raphson’s resulting
azimuthal value, a smooth curve was constructed (Figure 4). To emphasize its
non-linear form, the exponential of its difference is also plotted: y = e>(/(*)=2)

Consequently the data is well suited for applying a polynomial approxima-
tion to for curve fitting. While higher degree polynomials were evaluated for the
resulting residuals (against the data, Table 1), only a cubic polynomial was con-
sidered for analysis. The assumption was that as the degree of the polynomial
increased, the operational requirements would offset the benefits of the improved
initial estimate. Within this work, the higher degree polynomials are more thor-
oughly evaluated, and constructed using Horner’s rule [1]. It should be noted
that when finding higher degree polynomials, coefficients must be non-zero. For
many of the even degree polynomials, this resulted in a close to zero coefficient
for the dominant term. The operation count, which is reduced through Horner’s
rule, is included within Table 1.

This improved estimate, through the use of a cubic approximating polyno-
mial, resulted in a 25% reduction in iterations, and a 15% reduction in compu-
tational time. These improvements are possible while still ensuring the solution
converges to an accurate value.
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Table 1. Polynomial Approximating Azimuthal Shift

Polynomial Sum of Squares Variance Operation
of Residuals of Residuals Count

Degree 1 1.19e+00 2.02e-04 2
Degree 2 9.27e-01 1.66e-04 4
Degree 3 2.30e-04 3.92e-08 6
Degree 4 2.06e-04 3.51e-08 8
Degree 5 2.51e-05 4.28e-09 10
Degree 6 2.20e-05 3.75e-09 12
Degree 7 9.06e-07 1.55e-10 14
Degree 8 7.90e-07 1.34e-10 16
Degree 9 4.79¢-08 8.18e-12 18
Degree 10 4.61e-08 7.87e-12 20

Upon acquisition of such this improved estimate for the Newton Raphson
iterative approach, an evaluation of eliminating iterations entirely was explored.
To this end, the result of the polynomial function was directly employed, and its
results evaluated. As expected, due to the lack of precision within the framework,
positional and areal error was generated, though nominally. The elimination of
iterations resulted in a 45% reduction in computational time, at the expense of
0.7km? areal error, and a displacement of 5.9 m. Consequently, for a visualiza-
tion, or analysis requirement, wherein such errors are negligible for visibility or
tolerance, the eliminated approach offers a viable alternative.

5 Supplemental Analysis

Lacking within the analysis of Harrison et al. is the briefly discussed polynomial
approximations. While it is assumed that a cubic polynomial is sufficient, evi-
dence is not provided to attest to this situation. As the polynomial improves the
estimation of the curve fitted data, it increases the possibility for a reduction in
iterations. Furthermore, the additional operational expense, for this improved
estimation enables a reduction in errors when iterations are eliminated and the
polynomial directly applied.

As such, different polynomial degrees are tested, and evaluated for their abil-
ity to support improved estimations. Further evaluation of the resulting real-time
support is also explored.

6 Results

Implementation and testing occurred using Qt/C-++ on an Intel i7 quad core
processor under Ubuntu 10.05.

The original implementation was contrasted against approaches described
using a fitted polynomial. Polynomials of degrees one through ten are evalu-
ated. It was observed that a polynomial at degree ten no longer exhibits a time
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improvement over the original, and as such, higher degrees are not considered.
As with Harrison et al., operation reduction is not considered for comparison.
Instead, the reduction of iterations through an improved initial estimate, and
the elimination of iterations by full use of the polynomial approximation are
evaluated. An error analysis for the latter is also provided.

For each of the three approaches - the original, improved polynomial approx-
imation, and iteration elimination - profiling, using gprof (v2.17), was performed
100 times for a high resolution, or quality level. A resolution refers to the number
of times an icosahedron face is initially divided prior to vertex projection. For
example, the 100 x 100 resolution level employed for the tests herein will split
the face into 10,000 subtriangles. The vertices of these faces are then projected
through the respective inversions.

Numerical results are presented in Table 2. The ”Method” column indicates
the version explored - the original inverse projection, the improved polynomial
approximation, or the eliminated iterations variant. The average iteration reflects
the improved estimate reducing the iterative convergence. This is also visualized
in Figure 5, where the distribution of iterations across the surface of the sphere
coloured accordingly. As the approximation improves, it requires less iterations
to converge. The percent time improvement compares the improved and elimi-
nated approaches against the original. Iteration improvement over the original
is presented for the improved but not the eliminated approach as no iterations
occur.

Error analysis for the elimination approach can be found in Table 3. Here,
distance is an absolute value, and the average distance converted to metres.
Similarly, the average and maximal error - as a percentage - are presented. The
average area error is also converted into m?, based on the surface area of the
Earth being 510,072,000 km?. The distribution of area error is visualized in
Figure 6. Blue indicates an increase in area, whereas purple indicates a decrease.

a) Original b) Poly. Degree 1 (¢) Poly. Degree 5 (d) Poly. Degree 8

Fig. 5. [teration Distribution. Blue = 4, Green = 3, Red = 2

Analyzing the real-time support for the optimizations involves exploring how
many points may be projected within the aforementioned 0.04167 seconds. If we
assume that the only time consumption during the duration is the projection
of points, we observe - based on the average time per call that approximately
240,000 points may be mapped through the original inverse Snyder projection. If
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Table 2. Profiling Results

Poly. Method Avg Avg Std Dev. Time Iter
Degree Iter. Time (s) Improv. Improv.
Original 3.82 0.1019 0.0288

1 Improved 3.82 0.1003 0.0322 1.57% 0.00%
1 Eliminated 0 0.0531 0.0238 47.89%
2 Improved 2.75 0.0997 0.0302 0.99% 1.70%
2 Eliminated 0 0.0562 0.0226 44.19%
3 Improved 2.92 0.0939 0.0323 6.38% 23.56%
3  Eliminated 0 0.0550 0.0203 45.16%
4 Improved 3.26 0.0963 0.0322 3.51% 14.51%
4  Eliminated 0 0.0579 0.0240 41.98%
5 Improved 2.89 0.0915 0.0299 7.76% 24.19%
5 Eliminated 0 0.0553 0.0248 44.25%
6 Improved 2.85 0.0944 0.0334 5.22% 25.43%
6 Eliminated 0 0.0577 0.0251 42.07%
7 Improved 2.43 0.0854 0.0270 13.12% 36.27%
7  Eliminated 0 0.0579 0.0224 41.10%
8 Improved 2.31 0.0855 0.0293 15.09% 39.57%
8  Eliminated 0 0.0576 0.0230 42.80%
9 Improved 2.29 0.0830 0.0258 17.17% 40.13%
9 Eliminated 0 0.0558 0.0240 44.31%
10 Improved 3.74 0.0999 0.0308 4.31% 1.85%
10 Eliminated 0 0.0580 0.0227 44.44%

Table 3. Error Analysis of

Elimination Approach

Poly. Avg Dist. Max Dist
Degree

Error

Error

. Avg Dist.
Error (m)

Avg Area
Error (%)

Max Area Avg Area
Error (%) Error (m?)

1

4.856e-

03 2.193e-02

3.093e+02

-6.665¢e-04

9.754e-01

-1.700e+-04

5.121e-

03 3.451e-02

3.262e+02

-7.862e-04

9.690e-01

-2.005e+-04

9.490e-05

6.193e-04 6.044e4-00

1.758e-06

1.596e-02

4.485e4-01

1.538e-03

1.223e-02 9.796e+01

-4.911e-05

9.876e-01

-1.253e+-03

2.167e-04

1.640e-03 1.380e+01

2.428e-06

1.596e-01

6.193e+-01

2.456e-05

2.831e-04 1.564e4-00

2.237e-06

7.625e-03

5.705e4-01

5.709e-06

6.889¢-05 3.636e-01

5.883e-07

1.813e-03

1.500e+-01

4.667e-06

6.842e-05 2.973e-01

7.744e-07

2.302e-03

1.975e+-01

O 00| | O U = W[ N

8.099e-06

7.995e-05 5.158e-01

1.366e-07

7.884e-03

3.485e-02

—_
o

1.717e-01

1.820e+00 1.093e+04

-7.657e4-00

7.670e-01

-1.953e4-08
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(a) Poly. Degree 1 (b) Poly. Degree 5 (¢) Poly. Degree 8

Fig. 6. Eliminated Distortion - Area Change. Blue - growth, Purple - reduction.

we employ the improved iteration technique, this increases to 270,000. Due to the
large reduction in time for the eliminated approach, we observe approximately
440,000 points that may be projected in the same time frame. This corresponds
to the approximately 44% decrease in computational time. Of course, visualiza-
tion involves more than just the projection of points, however the values provided
represent a maximal potential given the optimizations. The different quantity of
points that may be projected are visualized in the graph of Figure 7. The fig-
ure illustrates how the decrease in processing time for the iteration elimination
approach increases the number of projected points. Further, the number of pro-
jected points for the improved approach gradually increases, over the original,
as the degree, and consequently, the accuracy of the polynomial improves. This
increase reaches a peak when employing a polynomial of degree 9, whereas the
additional calculations for degree 10 begin to inhibit the improved approximation
thereby reducing the points that may be projected in real-time.

—

Number of Points (x 10,000)

20
15 —Original [
10 —Improved [—
5 Eliminated —
0 T T T T T T T T T ]
1 2 3 4 5 6 7 8 9 10

Polynomial Degree

Fig. 7. Number of Points Projected in Real-Time (24 fps)
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7 Discussion

Based on the error comparison between the original projection and the elimi-
nated approach, as illustrated in Table 3, distance and areal errors are improved
upon as the degree of the approximating polynomial increases. This corresponds
to a better approximation for the fitted curve. For example, with a degree of
3, an average area error of 45 m? occurs. A polynomial of degree 9, on the
other hand, has an average areal error corresponding to 3.5 m?. This reduction
in error increases the resolution upon which the system may employ the faster
elimination approach before this error becomes apparent.

The achievement of almost a half a million points, which may be projected
within the 24 fps requirement, is a great improvement over the quarter million
previously possible. This is particularly important when coupled with a visual-
ization system that exploits level of detail visualization techniques, and therefore
have the ability to employ the eliminated approach with simultaneous precision
at the high levels of detail.

8 Conclusion

With visualization systems requiring real-time accurate and equal area informa-
tion of large quantities of data, an effective projection mechanism is imperative.
With much data acquired through planar means, area preservation during spher-
ical conversion is important. Such an area preserving quality provides researchers
and businesses with accurate analysis of their data. Such analysis, along with the
visualization, relies on underlying feature outlines which may span thousands
or even millions of points for a single region. The conversion of these feature
points to their spherical coordinates requires both accuracy and efficiency. The
repeated employment of the inverse Snyder projection, as occurs in industry, can
be extremely time consuming - greatly limiting the number of points available
for display within a real-time framework. The speeds ups provided by Harrison
et al greatly reduce time taken for the iterative root-finding for the non-linear
calculations, however an improved approximating polynomial is able to further
improve these results.

Whereas Harrison et al found a 25% iteration reduction with a cubic poly-
nomial, upwards of 40% is possible with a degree 9. Furthermore, while the
higher degree doesn’t significantly improve the speed of the eliminated iteration
approach - roughly 45% - it reduces the error ten fold. This improvement in-
creases the amount of data that may be visualized until this erroneous threshold
is reached.

Finally, the real-time qualities of these optimizations are obvious and demon-
strate the need for their employment. Whereas the original Snyder inversion only
supported a quarter million points for projection, the optimized elimination ap-
proach supports almost one half million points. This increase in visualization
data lends itself to improved visualization, processing and analysis time.

If we consider the Earth as a perfect sphere, it remains of worth to expand on
this work further by analyzing the different sphere circumscribing polyhedron.
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Snyder discovered his projection resulted in the least amount of distortion when
projecting with the truncated icosahedron. While the hexagons constructed are
challenging to incorporate into a computer graphics visualization, it may be
of worth to attempt to work around them to support a representation with
reduced shape distortion. In the meanwhile, icosahedral support is employed
within industrial applications, and we have demonstrated further optimizations
which will benefit the community.
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