
Local specification of surface subdivision
algorithms
Colin Smith, Przemyslaw Prusinkiewicz, and Faramarz Samavati
Department of Computer Science, University of Calgary
Calgary, Alberta, Canada T2N 1N4
{smithco|pwp|samavati}@cpsc.ucalgary.ca

Abstract

Many polygon mesh algorithms operate in a local manner, yet are formally specified using
global indexing schemes. This obscures the essence of these algorithms and makes their
specification unnecessarily complex, especially if the mesh topology is modified dynamically.
We address these problems by defining a set of local operations on polygon meshes
represented by graph rotation systems. We also introduce the vv programming language,
which makes it possible to express these operations in a machine−readable form. The
usefulness of the vv language is illustrated by the application examples, in which we
concentrate on subdivision algorithms for the geometric modeling of surfaces. The algorithms
are specified as short, intuitive vv programs, directly executable by the corresponding
modeling software.

Reference

C. Smith, P. Prusinkiewicz, F. Samavati: Relational specification of subdivision algorithms. Applications of
Graph Transformations with Industrial Relevance (AGTIVE 2003): Lecture Notes in Computer Science 3062,
pp. 313−327

Local Specification of Surface Subdivision Algorithms

Colin Smith, Przemyslaw Prusinkiewicz and Faramarz Samavati

University of Calgary,
Calgary, Alberta, Canada T2N 1N4

{smithco,pwp,samavati }@cpsc.ucalgary.ca

Abstract. Many polygon mesh algorithms operate in a local manner, yet are
formally specified using global indexing schemes. This obscures the essence of
these algorithms and makes their specification unnecessarily complex, especially
if the mesh topology is modified dynamically. We address these problems by
defining a set of local operations on polygon meshes represented by graph rota-
tion systems. We also introduce thevv programming language, which makes it
possible to express these operations in a machine-readable form. The usefulness
of the vv language is illustrated by the application examples, in which we con-
centrate on subdivision algorithms for the geometric modeling of surfaces. The
algorithms are specified as short, intuitivevv programs, directly executable by
the corresponding modeling software.

1 Introduction
Locality is one of the most fundamental characteristics of structured dynamical systems.
It means that a neighborhood relation is defined on the elements of the system, and that
each element changes its state according to its own state and the state of its neighbors.
The elements positioned farther away are not considered. A challenging problem is the
characterization and modeling of dynamical systems with a dynamical structure [1],
in which not only the state of the elements of the system, but also their number and
configuration, change over time. In this paper, we consider a class of such systems
pertinent to geometric modeling and represented by surface subdivision algorithms.

Subdivsion algorithms generate smooth (at the limit) surfaces by iteratively sub-
dividing polygon meshes. This process involves the creation of new vertices, edges,
and faces. The operations on the individual mesh elements are described in local terms
usingmasks[2], also referred to asstencils[3]. A mask is a graph that depicts a vertex
of interest (either a newly created point or an old vertex being repositioned) and the
neighbors that affect it. The new vertex position is determined as an affine combination1

of the vertices identified by the mask.
Despite the locality and simplicity of the masks, formal descriptions of subdivi-

sion algorithms often rely on a global enumeration (indexing) of the polygon mesh
elements [2]. Indices have the advantage of being the standard mathematical notation,
conducive to stating and proving properties of subdivision algorithms. They are also

1 An affine combination ofn pointsP1,P2, . . . ,Pn is an expression of the formα1P1 + α2P2 +
· · ·+αnPn, where the scalar coefficientsαi add up to one:α1+α2+ · · ·+αn = 1. The meaning
of the affine combination is derived from its transformation to the formP= P1+α2(P2−P1)+
· · ·+αn(Pn−P1), which is a well-defined expression of vector algebra [4, 5].

2 C. Smith, P. Prusinkiewicz and F. Samavati

closely related to the array data structures supported by most programming languages.
On the other hand, indices provide only an indirect access to the neighbors of an
element in a polygon mesh: all mesh elements must be first enumerated and then index
arithmetic must be performed to select a specific neighbor. This arithmetic becomes
cumbersome for irregular meshes. Moreover, for dynamically changing mesh struc-
tures, indices may have to be updated after each iteration of the algorithm. The index
notation is also too powerful: providing a unique index to each vertex makes it possible
to access vertices at random, thus violating the locality constraint. We seek a notation
that would be as intuitive as masks, but also sufficiently precise to formally specify and
execute subdivision algorithms.

Within the confines of linear and branching structures, an example of such a notation
is provided by L-systems. In addition to the generation of fractals and the model-
ing of plants [6], L-systems have recently been applied to the geometric modeling
of subdivision curves [7]. Unfortunately, known extensions of L-systems to polygonal
structures, namelymap L-systems[6, 8] andcell systems[9], lack features needed for the
specification of subdivision algorithms for surfaces. They do not offer a flexible control
over geometry, and do not provide a mechanism for accessing context information.
Limited geometric interpretations and a focus on the context-free case are also prevalent
in the broader scope of graph grammars (c.f. [10, 11]).

Our proposed solution preserves the purely local operation of L-systems and graph
grammars, but departs from their declarative character. Instead, context information is
accessed and modeled structures are modified by sequences of imperative operations.

The ease of performing local operations on polygon meshes depends on their repre-
sentation. Known examples of such representations, conducive to both local information
gathering and mesh transformations, include thewinged-edge[12], andquad-edge[13]
representations. Pursuing objectives closer to ours, Egli and Stewart [14] appliedcellu-
lar complexes[15] to specify Catmull-Clark [16] subdivision in an index-free manner,
and Lienhardt [17] showed that local operations involved in subdivision algorithms can
be defined usingG-maps[18, 19]. More recently, Velho [20] proposed a method for
describing subdivision algorithms using stellar operators [21] that act on ahalf-edge
structure [22].

We have chosen yet another representation, based on the mathematical notion of
graph rotation systems[23, 24]. A graph rotation system associates each vertex of
a polygon mesh with an oriented circular list of its neighboring vertices. A set of
these lists, defined for each vertex, completely represents the topology of a 2-manifold
mesh [24]. Graph rotation systems have been introduced to computer graphics by Ak-
leman, Chen and Srinivasan [25–27] as a formal basis for thedoubly linked face list
representation of 2-manifold meshes. Akleman et al. have also defined a set of oper-
ations on this representation, which they used to implement interactive polygon mesh
modeling tools.

We introducevertex-vertex systems, related to theadjacency-listgraph representa-
tion [28], as an alternative data structure based on the graph rotation systems. We also
define thevertex-vertex algebrafor describing local operations on the vertex-vertex
systems, andvv, an extension of the C++ programming language, for expressing these
operations in a machine-readable form. This leads us to thelanguage + enginemodeling

Local Specification of Subdivision Algorithms 3

paradigm, which simplifies the implementation of individual algorithms by treating
them as input to a multi-purpose modeling program. We illustrate the usefulness of this
paradigm by presenting concisevv specifications of several subdivision algorithms.

2 Vertex-vertex systems
2.1 Definitions
Let U be an enumerable set, or theuniverse, of elements calledabstract vertices. We
assume thatU is ordered by a relation<; this assumption simplifies the implementation
of many algorithms (Section 3). Next, letN : U 7→ 2U be a function that takes every
vertexv∈U to a finite subsetv? ⊂U of other vertices (v 6∈ v?). We call the setv? the
neighborhood, and its elements theneighbors2 of v. Finally, let thevertex set S⊂U be
a finite subset of the universeU , andNS be the restriction of the neighborhood function
N to the domainS; thusNS(v) = v? if N(v) = v? andv ∈ S (the elements ofv? may
lie outsideS). We call the pair〈S,NS〉 a vertex-vertex structureover the setS with
neighborhoodNS.

An undirected graphover a vertex setSis a vertex-vertex structure overS, in which:
(a) all neighborhoods are included inS (the vertex setS is closedwith respect to the
functionN), and (b) vertexu is in the neighborhood ofv if and only if vertexv is in the
neighborhood ofu (u∈ v? if and only if u∈ v?, thesymmetry condition). The pairs(u,v)
of vertices that are in the neighborhood of each other are callededgesof the graph. An
edge isorientedif the pair(u,v) is considered different from(v,u).

A vertex-vertex rotation system, or vertex-vertex systemfor short, is a vertex-vertex
structure in which the vertices in each neighborhood form a cyclic permutation (i.e., are
arranged into a circular list). Agraph rotation systemis a vertex-vertex system that is
both a graph and a vertex-vertex rotation system.

A polygon meshis a collection of vertices, edges bound by vertex pairs, and poly-
gons bound by sequences of edges and vertices. A mesh is aclosed 2-manifoldif it is
everywhere locally homeomorphic to an open disk [24].

Fig. 1. A
polygon
identification
in a graph
rotation system.

A polygonal interpretationof a vertex-vertex system maps it
into a polygon mesh. The interpretations that we consider in this
paper are variants of theEdmonds’ permutation technique[23,
24, 26], which is defined for connected graph rotation systems. It
defines polygons of the mesh using the following algorithm (Fig. 1).
Given an oriented edge(u,v) in S, we find the oriented edge(v,w)
such thatw immediately followsu in the cyclic neighborhood of
v. Next, we find the oriented edge(w,z) such thatz immediately
follows v in the neighborhood ofw. We continue this process
until we return to the starting pointu. The resultingorbit (cyclic
permutation) of verticesu,v,w,z, . . . and the edges that connect them
are the boundaries of a polygon. By considering all such orbits in
S, we obtain a polygon mesh with polygons on both sides of each
(unoriented) edge. From this construction it immediately follows

2 Our terminology is motivated by the practice of referring to adjacent cells in a grid as
neighbors.

4 C. Smith, P. Prusinkiewicz and F. Samavati

that the resulting mesh is a uniquely defined, orientable, closed 2-manifold (see [24] for
a proof).

Fig. 2. Relations between
notions pertinent to vertex-
vertex systems

Vertexpositionsare a crucial aspect of thegeometric
interpretationof vertex-vertex systems. We will consider
geometric interpretations in which edges are drawn as
straight lines between vertices, and polygons are properly
defined if their vertices and edges are coplanar.

The above progression of notions is summarized in
Fig. 2. It suggests that polygon meshes can be ma-
nipulated using three types of operations: set-theoretic,
topological, and geometric operations. The most difficult
problem is the manipulation of topology. We address
it by introducing a set of operations that modify at
most one neighborhood at a time, and transform a
vertex-vertex system into another vertex-vertex system.
The individual operations do not necessarily transform
graphs into graphs, because they may createincomplete
neighborsthat violate the symmetry condition (u∈ v? but
v 6∈ u?).

2.2 The vertex-vertex algebra
The vertex-vertex algebraconsists of the class of
vertex-vertex rotation systems with a set of operations
defined on them. We introduce these operations using a

mathematical notation that combines standard and new mathematical symbols. We
also present the equivalent expressions and statements of thevv language. A further
description of this language and its implementation is given in Section 2.3.

In thevv language, vertex sets are a predefined data type. A setS is created using
the declarationmesh S, and is in existence according to the standard scoping rules of
C++. Thevv language supports a subset of the standard set operations, listed in Table 1.
In addition to operations that return a set as the result,vv includes iteration operators
for flow control invv programs.

Name Math. notationvv statement

set creation let S⊂U mesh S
assignment S= T S= T
union S= S∪T merge Swith T
addition of an elementS= S∪{v} add v to S
removal of an elementS= S−{v} remove v from S
iteration over a set ∀v∈ S forall v in S
iteration over neighbors∀x∈ v? forall x in v

Table 1. Set-theoretic operations supported by thevv
language

Topological operations
are the core of the vertex-
vertex algebra. They are
divided into three groups:
query, selection, andedit-
ing operations. Query op-
erations return informa-
tion about vertices. Se-
lection operations return
an element of a ver-
tex neighborhood. Edit-
ing operations locally mod-
ify a vertex-vertex system. Definitions of these operations are given in Table 2. The last
column points to the illustrations below the table.

Local Specification of Subdivision Algorithms 5

Name Math. notationvv statement Description Note Fig
Query operations

membership x∈ v? is x in v true iff vertexx is in the
neighborhood ofv

order x < v x < v true iff vertexx precedes
vertexv in the universeU

valence |v?| valence v returns the number of
neighbors of vertexv

Selection operations
any let x∈ v? any in v returns a neighbor ofv 1
next v? ↑ x nextto x in v returns vertex that fol-

lows x in the neighbor-
hood ofv

2 b

previous v? ↓ x prevto x in v returns vertex that pre-
cedesx in the neighbor-
hood ofv

2 c

Editing operations
create let v∈U vertex v create a vertex
set neighborhoodv? = {a,b,c} make {a, b, c} nb of v set the neighborhood ofv

to the given circular list
3 a

erase v? = v?−x erase x from v removex from the neigh-
borhood ofv if x∈ v?

4 d

replace v? = v?−a+x replace a with x in v substitutex for a in the
neighborhood ofv

5 e

splice after v? +x� a splice x after a in v insert x after a in the
neighborhood ofv

5 f

splice before v? +x≺ a splice x before a in v insert x before a in the
neighborhood ofv

5 g

1) Returns the null vertex ifv? is empty. 2) Returns the null vertex ifx 6∈ v?.
3) Not defined (error reported) ifv appears in the list, or the same vertex is listed twice.
4) No effect ifx 6∈ v?. 5) No effect ifa 6∈ v?; not defined (error reported) ifx = v or x∈ v?.

a) b) c) d)
v? = {a,b,c,d,e, f} b = v? ↑ a f = v? ↓ a v? = v?−a

e) f) g)
v? = v?−b+x v? = v? +x� a v? = v? +x≺ a

Table 2. Top: definition of the topological operations of the vertex-vertex algebra. Bottom:
graphical interpretation of the selection and editing operations. a) Setting the initial neighborhood
of vertexv. b-g) The results of various operations applied tov.

6 C. Smith, P. Prusinkiewicz and F. Samavati

We use the standard functional notationf (v) or vv expressionv$f to associate
propertyf with a vertexv. A special case is the position of a vertex, denotedv or v$pos.
Positions can be assigned explicitly, by referring to an underlying coordinate system,
or result from affine geometry combinations and vector operations applied to the pre-
viously defined points. We use the standard C++ operator overloading mechanism to
extend arithmetic operators to positions and vectors.

Operations of the vertex-vertex algebra are commonly iterated over vertex sets. This
raises important questions concerning the sequencing of these individual operations.
For example, if the same operation is to be performed on a pair of neighboring vertices
u and v, the results may be different depending on whetheru is modified first,v is
modified first, or both vertices are modified simultaneously. To eliminate the unwanted
dependence on the execution sequence, we introduce thecoordination operationsyn-
chronize S, which creates a copy ‘v of each vertexv in the setS. All subsequent
operations on the verticesv∈S(until the nextsynchronize statement) do not affect the
vertices ‘v, which continue to store the “old” values of vertex attributes. For example,
‘v$pos denotes the position of vertexv at the time when thesynchronize statement
was last issued, whereasv$pos denotes the current position ofv. Similarly, ‘v? andv?

denote the old and current neighborhoods ofv. The use of old attributes instead of the
current ones makes it possible to iterate over the elements of a set in any order without
affecting the iteration results.

2.3 Implementation of vertex-vertex systems
We have implemented vertex-vertex systems as a set of programs and libraries collec-
tively called thevv environment. The central component of this environment isvvlib,
a C++ library containing data structures and functions implementing the vertex-vertex
polygon mesh representation and algebra. The user can refer to these structures and
functions directly from a program written in C++, or from a program written in thevv
language.

The vv language extends C++ with keywords and expressions implementing the
vertex-vertex algebra. They are listed under the column ‘vv statement’ in Tables 1 and
2. All of the examples presented in this paper are actual code written in thevv language.
To enhance code legibility, we set variable names in italics.

In order to be executed, avv program is first translated to a C++ program, with the
keywords and expressions specific tovv translated into calls to thevvlib library. This
C++ program is then compiled into a dynamically linked library (DLL). The model-
ing program, calledvvinterpreter, loads this DLL, runs, and produces the graphical
output. This whole processing sequence is automated: from the user’s perspective, the
vvinterpreter treats thevv program as an input and runs accordingly. This approach
is based on that introduced by Karwowski and Prusinkiewicz to translate and execute
L-system-based programs in [29].

3 Subdivision algorithms
To illustrate the usefulness of the vertex-vertex algebra, we now provide compact de-
scriptions of several subdivision algorithms. These descriptions can be directly executed
by vvinterpreter.

Local Specification of Subdivision Algorithms 7

3.1 Insertion of a Vertex
A simple routine that is of much use in writing subdivision algorithms is a function that
creates a new vertexx and inserts it between two given verticesp andq (Fig. 3).

1 vertex insert(vertex p, vertex q) {
2 vertex x;
3 make {p, q} nb of x;
4 replace p with x in q;
5 replace q with x in p;
6 return x;
7 }

Fig. 3.Thevv code and illustration of the insertion of a vertexx between verticesp andq. Vertex
x replacesp as the neighbor ofq andq as the neighbor ofp; verticesp andq become neighbors
of x.
3.2 Polyhedral subdivision
One of the simplest subdivision algorithms is the polyhedral subdivision of triangular
meshes [30]. The algorithm inserts a new vertex at the midpoint of each edge, and
divides each triangle of the mesh into four co-planar triangles. While the overall shape
of the initial polyhedron does not change, the faces are subdivided.

1 void polyhedral(mesh& S) {
2 synchronize S;
3 mesh NV;
4
5 forall p in S{
6 forall q in ‘p {
7 if (p < q) continue;
8 vertex x = insert(p, q);
9 x$pos = (p$pos + q$pos) / 2.0;

10 add x to NV;
11 }
12 }
13 forall x in NV {
14 vertex p = any in x;
15 vertex q = nextto p in x;
16 make {nextto x in q, q, prevto x in q,
17 nextto x in p, p, prevto x in p} nb of x;
18 }
19 merge Swith NV;
20 }

a)

b)

c)

Fig. 4. Left: the polyhedral subdivision algorithm specified using vertex-vertex systems. Right:
thevv identification of points involved in the creation of a new vertexx (a), thevv identification
of vertices that will become neighbors ofx (b), and the updated neighborhood of the new vertex
x (c).

The vv program that implements one step of the polyhedral subdivision consists
of two loops (Fig. 4). The first loop (lines 5 to 12) iterates over pairs of neighboring

8 C. Smith, P. Prusinkiewicz and F. Samavati

vertices in the old vertex setS. The conditionp < q in line 7 assures that each vertex
pair (i.e. edge of the polygon mesh) will be considered only once. New vertices are
inserted at the midpoint of each edge (line 9) and added to the setNV (line 10). The
second loop (lines 13 to 18) inserts new edges by redefining the neighborhoods of the
new points. The intervening neighborhoods and the result of insertion are shown on the
right side of Figure 4. An example of a polygon mesh and the results of its polyhedral
subdivision are shown in Figure 5.

Fig. 5. From left to right: Thevv specification of an initial polygon mesh topology, a sample
polyhedron with that topology, and three steps of its polyhedral subdivision (with hidden lines
eliminated).

3.3 Loop algorithm
The Loop subdivision scheme [31] is topologically equivalent to the polyhedral subdi-
vision scheme, in the sense that both operate on triangular meshes and subdivide a trian-
gular face into four triangles in every iteration step. The vertex-vertex implementations
of both schemes have, therefore, a similar structure. The difference is in the positioning
of vertices: the Loop case aims at constructing a smooth surface with a general shape
controlled by the initial polyhedron (Fig. 6). To this end, the Loop algorithm places
new vertices using a mask involving four old vertices, and repositions old vertices using
another mask that incorporates all of their immediate neighbors. Avv implementation
of the Loop subdivision algorithm for closed surfaces and the corresponding masks are
given in Figure 7. The derivation of the coefficients of the masks is presented in [31].

Fig. 6.An initial polygon mesh and the results of three iterations of Loop subdivision

Local Specification of Subdivision Algorithms 9

1 void loop(mesh& S) {
2 double pi2 = 6.2832;
3 synchronize S;
4 mesh NV;
5
6 forall p in S{
7 double n = valence p;
8 double w = (5.0/8.0)/n
9 −pow(3.0/8.0 + 1.0/4.0∗cos(pi2/n),2.0)/n;

10 p$pos ∗= 1.0 − (n ∗ w);
11 forall q in ‘p {
12 p$pos += w ∗ ‘q$pos;
13 if (p < q) continue;
14 vertex x = insert(p, q);
15 x$pos = 3.0/8.0 ∗ ‘p$pos + 3.0/8.0 ∗ ‘q$pos
16 + 1.0/8.0 ∗ ‘(nextto q in ‘p)$pos
17 + 1.0/8.0 ∗ ‘(prevto q in ‘p)$pos;
18 add x to NV;
19 }
20 }
21 forall x in NV {
22 vertex p = any in x;
23 vertex q = nextto p in v;
24 make {nextto x in q, q, prevto x in q,
25 nextto x in p, p, prevto x in p} nb of x;
26 }
27 merge Swith NV;
28 }

a)

b)

c)

Fig. 7. Left: thevv implementation of the Loop subdivision algorithm. Right: illustration of the
algorithm. a) The Loop mask for a new vertex. Vertex labels are the weights used in the affine
combinations of vertex positions. b) Thevv identification of vertices involved in the application
of the mask to a new vertexx. c) The Loop mask for old vertices.

3.4 Butterfly algorithm
The butterfly subdivision algorithm [32], like that for Loop subdivision, is topologically
equivalent to the polyhedral subdivision. In contrast to the Loop subdivision, however,
which approximates the shape of the initial polyhedron, the butterfly algorithm is an
interpolating scheme. Consequently, the old vertex positions are not adjusted in the
course of the algorithm. In order to produce a smooth limit surface, the butterfly algo-
rithm uses a more extensive mask for the new vertices, which includes points outside
the immediate neighborhood of the subdivided edge. This mask and the completevv
implementation of the butterfly algorithm for closed surfaces are presented in Figure 8.
An example application of the algorithm is illustrated in Figure 9.

3.5
√

3 algorithm
Kobbelt’s

√
3-subdivision algorithm [33] is an example of a scheme that changes the

topology of a triangular mesh in a manner different from the polyhedral subdivision.
Thevv specification of the

√
3-subdivision algorithm is given by Figure 10. In the first

10 C. Smith, P. Prusinkiewicz and F. Samavati

1 void butterfly(mesh& S) {
2 double k = 1.0/16.0, l = 1.0/8.0, m = 1.0/2.0;
3 synchronize S;
4 mesh NV;
5
6 forall p in S{
7 forall q in ‘p {
8 if (p < q) continue;
9 vertex x = insert(p, q);

10 x$pos = m ∗ ‘p$pos + m ∗ ‘q$pos
11 + l ∗ ‘(prevto q in ‘p)$pos
12 + l ∗ ‘(nextto q in ‘p)$pos
13 − k ∗ ‘(nextto (nextto q in ‘p) in ‘p)$pos
14 − k ∗ ‘(nextto (nextto p in ‘q) in ‘q)$pos
15 − k ∗ ‘(prevto (prevto q in ‘p) in ‘p)$pos
16 − k ∗ ‘(prevto (prevto p in ‘q) in ‘q)$pos;
17 add x to NV;
18 }
19 }
20 forall x in NV {
21 vertex p = any in x;
22 vertex q = nextto p in x;
23 make {nextto x in q, q, prevto x in q,
24 nextto x in p, p, prevto x in p} nb of x;
25 }
26 merge Swith NV;
27 }

a)

b)

Fig. 8. Left: the vv implementation of the butterfly algorithm. Right: the mask (a) andvv
identification (b) of points involved in its application to a new vertexx.

Fig. 9.An initial polygon mesh and the results of three iterations of butterfly subdivision

loop (lines 11 to 15), a new vertexc is created at the centroid of each triangle. The
neighborhoods are then updated such that each triangle is divided into three, that is
each vertexv,x,y of the original triangle is connected toc, and the verticesv,x,y form
the neighborhood ofc (lines 16 to 19). In the second loop (lines 23 to 31), the topology
is updated by “flipping” all the edges between pairs of old vertices. An example of the
operation of the algorithm is shown in Figure 11.

Local Specification of Subdivision Algorithms 11

1 void sqrt3(mesh& S) {
2 double pi2 = 6.28;
3 synchronize S;
4 mesh NV;
5
6 forall p in S{
7 double n = valence ‘p;
8 double w = (4.0 - 2.0 * cos(pi2 / n)) / 9.0;
9 p$pos *= (1.0 - w);

10 forall r in ‘p {
11 p$pos += ‘r$pos * w / n;
12 vertex q = nextto r in ‘p;
13 if (r < p ‖ q < p) continue;
14 vertex c;
15 c$pos = (‘p$pos + ‘r$pos + ‘q$pos) / 3.0;
16 make {p, r, q} nb of c;
17 splice c after r in p;
18 splice c after q in r;
19 splice c after p in q;
20 add c to NV;
21 }
22 }
23 forall p in S{
24 forall q in ‘p {
25 if (q < p) continue;
26 vertex x = nextto q in p;
27 vertex y = prevto q in p;
28 splice y after p in x; splice x after q in y;
29 erase q from p; erase p from q;
30 }
31 }
32 merge Swith NV;
33 }

a)

b)

c)

Fig. 10.Left: the algorithm for
√

3-subdivision. Right: a portion of the original mesh (a) after the
insertion of central points and subdivision of triangles (b) and after the flip operation (c).

Fig. 11.Example of subdivision using the
√

3 algorithm

4 Conclusions
We have addressed the problem of specifying polygon mesh algorithms in a concise and
intuitive manner. To this end, we introduced a set of operations for locally changing the

12 C. Smith, P. Prusinkiewicz and F. Samavati

topology of a mesh, and we defined these operations in local terms. We have focused
on subdivision algorithms as an application area, and we have shown that the resulting
vertex-vertex algebra leads to very compact and intuitive specifications of some of the
best known algorithms.

We have also designedvv, a programming language based on the vertex-vertex
algebra, and we implemented a modeling environment in whichvv programs can be
executed. In addition to the subdivision algorithms described in this paper, we usedvv
to generate fractals and aperiodic tilings, simulate growth of multicellular biological
structures, and create procedural textures on non-regular meshes. In these tests, we
foundvv programs extremely conducive to rapid prototyping and experimentation with
polygon mesh algorithms.

Our implementation of the vertex-vertex algebra was guided by the elegance of pro-
gramming constructs, rather than performance. For example, profiling ofvv programs
showed that approximately 50% of the algorithm execution time is spent on dynamic
memory management. It is an interesting open question whether vertex-vertex systems
could reach the speed of the fastest implementations of polygon mesh algorithms.

Another interesting class of problems is related to the temporal coordination of
vertex-vertex operations. The synchronization mechanism introduced in Section 2.2 is
in fact a method for simulating parallelism on a sequential machine. This suggests that
it may be useful to extendvv with constructs for explicitly specifying parallel rather
than sequential execution of operations. Such an extension could further clarifyvv pro-
grams and lead to their effective implementation on parallel processors with a suitable
architecture. Finally, the problem of providing a declarative, grammar-like method for
specifying subdivision algorithms remains open. Such specification, if possible, may
provide the ultimately concise and clear specification of these algorithms.

References
1. Giavitto, J.L., Michel, O.: MGS: A programming language for the transformation of

topological collections. Research Report 61-2001, CNRS - Université d’Evry Val d’Esonne
(2001)

2. Zorin, D., Schr̈oder, P., DeRose, T., Kobbelt, L., Levin, A., Sweldens, W.: Subdivision for
modeling and animation. In: SIGGRAPH Course Notes, New York, ACM (2000)

3. Sabin, M.: Subdivision surfaces. Shape Modeling International tutorial notes (2002) 25pp.
4. DeRose, T.: A coordinate-free approach to geomeric programming. In Strasser, W., Seidel,

H.P., eds.: Theory and practice of geometric modeling. Springer, Berlin (1989) 291–305
5. Goldman, R.: On the algebraic and geometric foundations of computer graphics. ACM

Transactions on Graphics21 (2002) 52–86
6. Prusinkiewicz, P., Lindenmayer, A.: The algorithmic beauty of plants. Springer-Verlag, New

York (1990)
7. Prusinkiewicz, P., Samavati, F., Smith, C., Karwowski, R.: L-system description of

subdivision curves. International Journal on Shape Modeling9 (2003) 41–59
8. Lindenmayer, A., Rozenberg, G.: Parallel generation of maps: Developmental systems

for cell layers. In Claus, V., Ehrig, H., Rozenberg, G., eds.: Graph grammars and their
application to computer science; First International Workshop. Lecture Notes in Computer
Science 73. Springer, Berlin (1978) 301–316

9. de Boer, M., Fracchia, F., Prusinkiewicz, P.: A model for cellular development in
morphogenetic fields. In Rozenberg, G., Salomaa, A., eds.: Lindenmayer systems: Impacts

Local Specification of Subdivision Algorithms 13

on theoretical computer science, computer graphics, and developmental biology. Springer,
Berlin (1992) 351–370

10. Rozenberg, G., ed.: Handbook of graph grammars and computing by graph transformation.
World Scientific, Singapore (1997)

11. Ehrig, H., Engles, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook of Graph Grammars
and Computing by Graph Transformation, Vol. 2: Applications, Languages and Tools. World
Scientific, Singapore (1999)

12. Baumgart, B.: Winged-edge polyhedron representation. Technical Report STAN-CS-320,
Stanford University (1972)

13. Guibas, L., Stolfi, J.: Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams. ACM Transactions on Graphics4 (1985) 74–123

14. Egli, R., Stewart, N.F.: A framework for system specification using chains on cell complexes.
Computer-Aided Design32 (2000) 447–459

15. Palmer, R., Shapiro, V.: Chain models of physical behavior for engineering analysis and
design. Research in Engineering Design5 (1993) 161–184

16. Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological
meshes. Computer Aided Design10 (1978) 350–355

17. Lienhardt, P.: Subdivision par opérations locales. Manuscript, Université de Poitiers (2001)
18. Lienhardt, P.: Subdivisions de surfaces et cartes géńeraliśees de dimension 2. Informatique

Théorique et Applications25 (1991) 171–202
19. Lienhardt, P.: Topological models for boundary representation: a comparison withn-

dimensional generalized maps. Computer-Aided Design23 (1991) 59–82
20. Velho, L.: Stellar subdivision grammars. In: Proceedings of Eurographics Symposium on

Geometry Processing, Eurographics Association (2003) 12pp.
21. Lickorish, W.B.R.: Simplicial moves on complexes and manifolds. Geometry and Topology

Monographs2 (1999) 299–320
22. Mäntyl̈a, M.: An introduction to solid modeling. Computer Science Press, Rockville (1988)
23. Edmonds, J.: A combinatorial representation of polyhedral surfaces (abstract). Notices of

the American Mathematical Society7 (1960) 646
24. White, A.: Graphs, groups and surfaces. North-Holland, Amsterdam (1973)
25. Akleman, E., Chen, J.: Guaranteeing the 2-manifold property for meshes with doubly linked

face list. International Journal of Shape Modeling5 (2000) 149–177
26. Akleman, E., Chen, J., Srinivasan, V.: A new paradigm for changing topology during

subdivision modeling. In: Proceedings of Pacific Graphics. (2000) 192–201
27. Akleman, E., Chen, J., Srinivasan, V.: A prototype system for robust, interactive and user-

friendly modeling of orientable 2-manifold meshes. In: Shape Modeling and Applications –
Proceedings of Shape Modeling International. (2002) 43–50

28. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to algorithms. Second Edition.
MIT Press, Cambridge, MA (2001)

29. Karwowski, R., Prusinkiewicz, P.: Design and implementation of the L+C modeling
language. Electronic Notes in Theoretical Computer Science86.2(2003) 19pp.

30. Stollnitz, E., DeRose, T., Salesin, D.: Wavelets for computer graphics. Morgan Kaufman,
San Francisco (1996)

31. Loop, C.: Smooth subdivision surfaces based on triangles. Master’s thesis, The University
of Utah (1987)

32. Dyn, N., Levin, D., Gregory, J.: A butterfly subdivision scheme for surface interpolation
with tension control. ACM Transactions on Graphics9 (1990) 160–169

33. Kobbelt, L.:
√

3-subdivision. In: Proceedings of SIGGRAPH, ACM (2000) 103–112

14 C. Smith, P. Prusinkiewicz and F. Samavati

