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Abstract In this work, we explore a set of techniques

for speeding up line-of-sight queries whilst attempting

to maintain accuracy. Line-of-sight queries, which test

if two entities can see each other over a 3D terrain

model, are an important operation in several applica-

tions. Given enough entities and a large enough terrain,

computing these queries can be expensive. We apply re-

verse subdivision methods to simplify the terrain model

and speed up the queries, including a novel feature-

aware reverse subdivision scheme. To counteract the

loss of accuracy due to simplification, we also examine

the problem of where entities should be placed after ter-

rain simplification to increase accuracy. Using iterative

methods that attempt to maximize accuracy, we show

that room for improvement exists over the standard

projection method. Then, using residual multiresolu-
tion vectors, we develop a relocation method designed

to maximize accuracy over simplified terrain models.

Finally, we present a fast line-of-sight algorithm that

combines these techniques with pre-existing algorithms.

Keywords Line-of-sight · Terrain Simplification ·
Multiresolution · Subdivision · Reverse Subdivision
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1 Introduction

Terrains, and the operations that can be applied to

them, comprise an important area of study in computer
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graphics and GIS. Line-of-sight (LoS) queries, in par-

ticular, can be an important operation in applications

such as flight or military battlefield simulations. Given

two entities on a terrain, a LoS query tests if the enti-

ties can see each other by determining whether or not

the sight line between those two entities intersects the

terrain (see Figure 1(a)). This involves traversing each

face of the terrain that lies along the path of the sight

line, and testing each for intersection with the sight line.

Although we treat entities as points, it is possible to

compute visibility between 3D objects by casting mul-

tiple lines-of-sight from the observer position (e.g. an

eye) to the viewed object, as in viewshed computation

and supersample anti-aliasing.

Digital terrain models can be divided into two types.

These are triangulated irregular networks and digital el-

evation models, often abbreviated to TINs and DEMs,

respectively. DEMs, also known as height maps, are reg-

ular (valence 4) grids of equally spaced terrain elevation

values, and are a well-accepted format for storing ter-

rain data. Data from NASA’s Shuttle Radar Topogra-

phy Mission (SRTM), for instance, is stored in height

map format. TINs are polygonal meshes, and are irreg-

ular in general.

The connectivity of height map terrains is implicit,

allowing elevation values to be stored in simple array-

like structures, whereas connectivity information for TINs

must be explicitly stored. As a result, it is possible to

traverse the elevation values of a DEM along a sight

line’s path analytically, whereas the faces of a TIN must

be queried (usually from a separate spatial data struc-

ture) and then intersected. Hence, line-of-sight algo-

rithms for DEMs tend to be faster than those for TINs

[23]. (Note that a number of LoS algorithms for DEMs

— for instance, those described in [12][23][10] — implic-

itly interpret DEMs as 3D bar charts with flat faces, as



2 Troy Alderson, Faramarz Samavati

(a) A line-of-sight query tests if two entities can see
each other over a terrain.

(b) Regularity-preserving terrain simplification can
be used to speed up queries.

(c) Point relocation adjusts the positions of the en-
tities in the simplified space.

(d) Based on the expected run-time of a query, a
simplified terrain can be chosen from a hierarchy
such that the query will be both fast and reason-
ably accurate over the terrain.

Fig. 1 We approach line-of-sight query optimization via three techniques: regularity-preserving terrain simplification, point
relocation, and a hierarchical algorithm.

opposed to continuous terrain meshes. They can be eas-

ily converted to 3D meshes by forming faces between

the elevation values for use with LoS algorithms de-

signed for TINs and for rendering.)

Even when using a fast algorithm, however, given

a large enough terrain and sizeable number of entities

the amount of time needed to compute the LoS queries

between all entities will be substantial. This can be-

come problematic for real time applications, particu-

larly those with a large number of mobile entities whose

visibility information changes from moment to moment

(as in a military simulation). One approach to speeding

up LoS queries is the use of terrain simplification. By

reducing the number of faces in the terrain, we reduce

the number of elevation values that must be checked

within a LoS query (Figure 1(b)). This method pro-

duces gains in algorithm speed by a constant factor, at

the cost of some accuracy.

In most applications, terrain simplification is ex-

pected to produce a simpler model that minimizes the

vertical distance error with or is visually similar to the

original model. Within this problem domain, however,

the simplification is expected to maximize visibility test

accuracy. While there appears to be some overlap, these

differing goals suggest different simplifications.

Most simplification algorithms introduce irregulari-

ties into the terrain model. In the work of Ben-Moshe

et al. [4], irregularity-producing simplification methods

are used to speed up LoS queries. However, as noted

above, LoS algorithms tend to be faster for completely

regular terrains. In this and previous work [1], we con-

sider the use of regularity-preserving terrain simplifica-

tion in speeding up queries.

The regularity-preserving methods we consider are

of the reverse subdivision paradigm, well-studied in the

field of curve and surface modeling. Subdivision meth-

ods introduce additional vertices into a curve or sur-

face with a constraint on geometric continuity. Reverse

subdivision schemes are an approximate inverse of sub-

division, and can be used as regularity-preserving sim-

plification schemes. The two can be combined into a

multiresolution framework, which allows one to transi-

tion between and synthesize various levels of resolution.

We test the accuracy-preserving performance of several

reverse subdivision schemes, including a novel scheme

intended to maximize LoS query accuracy, against a

selection of irregular simplification methods.
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After simplification, entities are usually projected

vertically onto the simplified terrain. This makes math-

ematical sense particularly for simplified terrains that

minimize vertical distance error to the original terrain.

However, for more general transformations and/or de-

formations of the terrain, as we are considering, a more

robust, general method is needed.

Point relocation is the transformation of entity po-

sitions to maximize visibility test accuracy after ter-

rain simplification (Figure 1(c)). We first consider an

optimization framework for point relocation, with em-

phasis on a theoretical perspective rather than a practi-

cal real-time implementation to demonstrate that room

for improvement exists over projection. Afterwards, we

present a practical relocation method for regular ter-

rains based on residual vectors.

Although simplification offers an increase in LoS

query speed, this speed gain is constant based on the

degree of simplification. Further speed increases require

further simplification, and therefore further loss in ac-

curacy. Drops in accuracy affect even those LoS queries

that are fast without simplification (e.g. those between

nearby entities). It would be ideal if only those LoS

queries that require speed optimization would be sped

up and affected by the accuracy drop. To this end, we

introduce an LoS query algorithm that computes visi-

bility information quickly with a low cost to accuracy.

Using terrain simplification, we generate a hierarchy

of progressively simpler versions of the original terrain

(Figure 1(d)). Each LoS query between two entities is

computed over one of the terrain variants in this hi-

erarchy, chosen based on the expected run-time of the

query.

We present related work in Section 2. Definitions

used throughout the paper, including what we mean

by test accuracy, are given in Section 3. Descriptions

of our terrain simplification methods (Section 4), point

relocation methods (Section 5), and hierarchical LoS al-

gorithm (Section 6) follow. Finally, Section 7 contains

comparison results and discussions for our methods, fol-

lowed by Section 8 with conclusions and future work.

2 Related Work

De Floriani and Magillo [8] identified three variants of

the visibility problem and presented some algorithms

for solving them. The three variants are point-to-point

visibility, point-to-line visibility, and point-to-region vis-

ibility (also known as viewshed analysis). Our work is

primarily concerned with the problem of point-to-point

visibility.

The implicit connectivity and 2D array indexing for

regular terrains suggest that algorithms on regular ter-

rains are more efficient than those for irregular terrains.

Seixas et al. [23] compared the run times of two visi-

bility algorithms which operate on similar principles—

Bresenham’s line algorithm [5] for regular terrains and

an R3-tree algorithm [16] for irregular terrains—and

found the Bresenham algorithm to be more efficient in

both run time and memory usage.

Our work pays particular attention to two different

LoS query algorithms on regular terrains: Bresenham’s

algorithm and the min/max quad tree algorithm. Bre-

senham’s line algorithm for plotting raster lines was

originally described in [5], and can be easily adapted

to traverse a sight line’s path over an elevation grid

and compare the height of the sight line to the terrain

height (as described in [23]). Spatial subdivision can

be used to produce an algorithm that is asymptotically

faster than Bresenham’s algorithm in the average case.

Duvenhage’s min/max quad tree algorithm is such an

algorithm, and is described in [10]. Brief descriptions of

both algorithms can be found in Section 6.1.

Franklin and Ray [12] presented a fast algorithm for

viewshed analysis on regular terrains, known as Xdraw.

Andrade et al. adapted Franklin and Ray’s algorithm

to perform this analysis on terrain in external memory

[2]. I/O operations on external memory form the bot-

tleneck for the algorithm, and so are minimized to keep

the algorithm fast. In general, because of the slow speed

of I/O operations on external memory it is preferable

for the terrain to reside completely in main memory.

For particularly large terrain data sets, terrain simpli-

fication is a powerful tool for reducing memory usage.

In [4], Ben-Moshe et al. experimented with terrain

simplification to speed up individual LoS queries. They

presented a novel terrain simplification algorithm specif-

ically designed to preserve LoS query accuracy and com-

pared its performance against three other simplifica-

tion methods. They found their algorithm preserved

visibility accuracy the best of the tested simplification

methods. Note, however, that the simplification meth-

ods studied in their paper all introduce irregularities

into the terrain model in the general case.

Forward and reverse subdivision have gained promi-

nence in recent years as an important geometric model-

ing technique, the latter of which can be used for terrain

simplification. These schemes form the basis of mul-

tiresolution frameworks, which have been studied by

Samavati et al. [22]. Multiresolution has several appli-

cations, including but not limited to multi-scale edit-

ing, iris and terrain synthesis [27][6], and terrain void

patching [26].

Samavati and Bartels have studied the reversal of

subdivision schemes in detail. In [21], they use least

squares data fitting to approximate a curve using a



4 Troy Alderson, Faramarz Samavati

coarser representation. In [3], they limit least squares

data fitting to local neighbourhoods to obtain local re-

verse subdivision matrices.

In our prior work, we have shown that regularity-

preserving terrain simplification can be easily achieved

using reverse subdivision schemes on curves [1]. By ap-

plying a curve subdivision scheme to the rows and columns

of a regular terrain, the resulting terrain will also be

regular. Some well-known curve subdivision schemes in-

clude Chaikin’s corner cutting scheme [7] and the inter-

polatory scheme of Dyn et al [11].

Our hierarchical algorithm bears some similarity to

the geometry clipmaps from Losasso and Hoppe’s 2004

paper [18]. They generate a viewer-centric hierarchy

for level-of-detail control in rendering, using Dyn-Levin

subdivision to synthesize finer levels of the hierarchy.

Rather than rendering, however, our work is concerned

with the use of a reverse subdivided hierarchy in per-

forming LoS queries. In a sense, our hierarchical algo-

rithm takes a level-of-detail approach to LoS queries.

3 Definitions

Consider a terrain model T and a set of 3D points P =

{p1, p2, . . . , pn} on T . Let O(p) be the observer positions

for any p ∈ P , which is offset a certain height from p.

We define a line-of-sight query over terrain T to be a

function, VT : R3 × R3 → {0, 1}, such that

VT (p1, p2) =


1 if the sight line between

O(p1) and O(p2) does not

intersect T

0 otherwise.

Note that VT (p1, p2) = VT (p2, p1).1

We define a LoS query algorithm to be a function

A such that

A(T, p1, p2) =


1 if the sight line between

O(p1) and O(p2) is thought to

not intersect T

0 otherwise.

Note that this definition allows for some inaccura-

cies in the computation of VT using algorithm A. We

define the accuracy of algorithm A acting on T and P ,

1 In a realistic simulation, visibility can be impacted and
rendered non-commutative by factors such as weather, eye-
sight impairments and limitations, the direction in which an
entity is facing, etc. For the purposes of this work, we ignore
all factors other than the terrain that can impact visibility
for either entity.

as in [4], to be the ratio of the number of queries com-

puted correctly to the total number of queries. More

formally,

Acc(A, T, P ) = 1−
∑

i>j |VT (pi, pj)−A(T, pi, pj)|(
n
2

) .

Accuracy can additionally be given in terms of the rate

of true positives (resp. true negatives). This is the ratio

of the number of queries correctly computed to not in-

tersect (resp. intersect) the terrain to the total number

of not intersecting (resp. intersecting) queries.

A terrain simplification method is a function S that

accepts a terrain model T and produces as output a

simplified version S(T ). A relocation method is a func-

tion R that accepts a point p ∈ R3 and produces as

output a relocated point R(p) ∈ R3.

We can approximate VT by computing VS(T ) with

point set R(P ). Given a LoS query algorithm A, the

computation of such an approximation is implicitly per-

formed using a new algorithm AS,R, defined such that

AS,R(T, p1, p2) = A(S(T ), R(p1), R(p2)).

4 Terrain Simplification

Advances in technology are allowing for the creation of

very high resolution terrain models. The greater detail

on these terrains increases the run-time of algorithms

that operate on them, such as LoS queries. Simplify-
ing such terrain models not only reduces their memory

usage, but also increases the running speed of said al-

gorithms.

Different terrain simplification methods have differ-

ent effects on a terrain’s topology and on LoS query

accuracy. In this section, we describe the simplification

methods used in our experiments and comparisons.

4.1 Irregular Simplification Methods

In the work of Ben-Moshe et al. [4], the authors’ novel

simplification algorithm was tested against three differ-

ent simplification algorithms that introduce irregular-

ities in the general case. For convenience, we refer to

them as irregular simplification methods. In the inter-

est of allowing our work to be compared with theirs,

we compare our regularity-preserving reverse subdivi-

sion schemes against these same irregular methods.

These methods are:



Optimizing Line-of-sight Using Simplified Regular Terrains 5

1. Garland and Heckbert’s [15][13] quadric error met-

ric based edge collapse, which we abbreviate to

QEC for short.

2. Garland and Heckbert’s [14] greedy insertion al-

gorithm, a generalization of the Ramer-Douglas-

Peucker algorithm for approximating curves [19][9]

to 3D polygonal meshes.

3. Silva et al.’s [25][24] greedy cuts algorithm.

4.2 Regularity-Preserving Simplification Methods

Our work concentrates on using reverse subdivision as a

paradigm of regularity-preserving simplification. In this

section, we provide a brief overview of subdivision and

the various approaches to reversing it, followed by a

description of the reverse subdivision schemes we have

tested.

We limit our discussions to curves, as they are easier

to understand and can be easily generalized to the rows

and columns (u- and v-curves) of regular terrains.

4.2.1 Subdivision and Reverse Subdivision

Subdivision is a family of refinement methods that in-

crease the resolution of curves and surfaces. These meth-

ods introduce new vertices into a curve or surface and

adjust the positions of old vertices such that the limit

curve — resulting from repeated applications of subdi-

vision — satisfies a geometric continuity constraint.

Several subdivision methods converge to B-Spline

curves at the limit. Chaikin’s well-known corner-cutting

scheme [7], for instance, converges to a third-order B-

Spline curve. Faber subdivision, named for Georg Faber

[21], which introduces midpoints between vertices (see

Figure 2), converges to a second-order B-Spline curve.

Fig. 2 Faber subdivision applied to a curve. The shape of
the curve remains unchanged; only the number of vertices is
affected. Orange vertices are introduced after one application
of subdivision, blue vertices after two.

A convenient matrix notation has arisen for subdivi-

sion schemes, which are linear operations. A subdivision

operation can be represented as a matrix P applied to

a vector of coarse points c, resulting in a vector of re-

fined points f = Pc. The Faber subdivision matrix, for

instance, has the general form

P =



1 0 0 · · · 0
1
2

1
2 0 · · · 0

0 1 0 · · · 0

0 1
2

1
2 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1


.

Notice here that P in this case is sparse and banded,

and features a repeating local pattern along the columns.

Many subdivision schemes share this trait and can be

more compactly represented as an ordered list of filter

values. The filter values for Faber subdivision are

{ 12 , 1,
1
2}.

The effect of subdivision can be reversed using re-

verse subdivision. Reverse subdivision schemes simplify

a curve by removing vertices and adjusting the po-

sitions of remaining vertices such that the resulting

coarse curve, if subdivided by the corresponding sub-

division scheme, will yield approximately the original

curve. In general, high resolution details of the curve

are lost in the process, requiring additional data for

perfect reconstruction of the original curve.

Hence, for a given subdivision scheme, the reverse

scheme is not unique. There exist several different gen-

eral approaches to reverse subdivision.

Global least squares reverse subdivision, as formu-

lated in [21], minimizes the least squares error ||Pc−f ||2
between the subdivided coarse curve Pc and original

curve f by solving the overdetermined system Pc = f

for c. The solution is a reverse subdivision matrix A =

(PTP )−1PT , where c = Af . Unlike their correspond-

ing subdivision matrices P , in general these A are not

sparse or banded and do not feature a repeating local

pattern, and must be recomputed for each size of f .

Local least squares reverse subdivision [3] addresses

this problem. Here, a local reverse subdivision matrix

AL is determined via least squares optimization in a

local window of the data points, i.e. using a local sub-

division matrix PL. An ordered list of mask values can

be extracted from the rows of AL and used as part of

a general formula for constructing reverse subdivision

matrices A for any size of f .

For instance, reversing a 3× 5 local Faber subdivi-

sion matrix (the smallest affine local subdivision matrix

that can be formed for Faber subdivision) results in a

reverse subdivision matrix with the general form
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A =



. . .

− 1
6

1
3

2
3

1
3 −

1
6 0 0

0 0 − 1
6

1
3

2
3

1
3 −

1
6

. . .

 ,

compactly represented by mask values

{− 1
6 ,

1
3 ,

2
3 ,

1
3 ,−

1
6}.

4.2.2 Reverse Subdivision Methods

Although Faber subdivision is not a smooth subdivi-

sion scheme (it converges to a polyline with C0 conti-

nuity) and thus undesirable for many modeling applica-

tions, it is precisely because Faber is not smooth that we

use its reverse schemes for our work. Often, the reverse

schemes of smooth subdivision schemes exaggerate the

shape of the curve to compensate for the smoothing ef-

fect. Although energy minimization can be applied to

make the result smooth [20], intuitively reverse Faber

subdivided terrains should remain close to the original

terrain shape even without energy minimization since

Faber subdivision has no effect on terrain shape.

Additionally, as with other reverse subdivision schemes,

reverse Faber subdivision features a convenient corre-

spondence between the rows and columns of the origi-

nal and simplified terrains and does not suffer from a

shrinking boundary.

We have tested a selection of pre-existing reverse

subdivision methods (see Figure 3) based on Faber sub-

division in the context of speeding-up LoS queries. These

are

Before After

(a) A curve before and after subsampling.

Before After

(b) A curve before and after reverse Faber
subdivision.

Fig. 3 Reverse subdivision methods.

1. Subsampling by a factor of 2. The simplest scheme

to reverse Faber subdivision is to discard every other

point, assuming it is a midpoint introduced by the

subdivision scheme.

2. Global least squares reverse Faber subdivi-

sion, described above.

3. Local least squares reverse Faber subdivision,

described above.

4.2.3 Feature-Aware Reverse Faber Subdivision

In addition to these pre-existing reverse subdivision

methods, we present a novel reverse subdivision scheme

intended to better preserve terrain shape by identifying

vertices of the curve critical to the terrain’s important

features (i.e. ridges and valleys) and preserving their

positions relative to each other. Our scheme identifies

these critical points and uses least squares optimiza-

tion to preserve the vectors between them. We call this

scheme feature-aware reverse Faber subdivision.

The critical points are found similarly to the ridge

network computation in the work of Ben-Moshe et al

[4]. In their work, an edge shared by two terrain faces

is considered to be a local ridge or channel if the inci-

dent faces have opposite slopes. In our work, a vertex

between two curve edges is considered to be a local

maximum or minimum (therefore a critical point) if

the edges incident to the vertex have opposite slopes

(see Figure 4). We take the local maxima and minima

and the endpoints of the curve to be the feature-critical

points.

a

b

c

Fig. 4 Identification of critical points. Points a and b are crit-
ical, since their incident edges have opposite slopes, whereas
point c is not critical.

Let p ⊆ f denote the set of critical points and vi =

pi+1 − pi be the vectors between neighbouring critical

points (see Figure 5).

We preserve the relative positioning of the pi by aug-

menting the linear system Pc = f with additional con-

straints, one for each vector vi. We use a feature weight

parameter w ∈ R where w > 0 to control the strength

of the feature preservation.

For example, the weighted linear system for the curve

shown in Figure 5 would be
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f0

f1

f2

f3

f4

f5
f6

f7

f8

v0
v1

v2

p0

p1

p2

p3

Fig. 5 Critical points (shown in red) and the vectors between
them (shown in blue).



1 0 0 0 0
1
2

1
2 0 0 0

0 1 0 0 0

0 1
2

1
2 0 0

0 0 1 0 0

0 0 1
2

1
2 0

0 0 0 1 0

0 0 0 1
2

1
2

0 0 0 0 1

−w w 0 0 0

0 0 −w w 0

0 0 0 −w w




c0
c1
c2
c3
c4

 =



f0
f1
f2
f3
f4
f5
f6
f7
f8

w · v0

w · v1

w · v2



.

We append the vectors w · vi to the end of f and

append additional rows, one for each of the vi, to P .

For a given i, the row corresponding to vi = fj − fk is

given exactly two non-zero entries: +w for the coarse

point cbj/2c and −w for the coarse point cdk/2e. This

adds the equations w · vi = w · (cbj/2c − cdk/2e) to the

linear system. If bj/2c = dk/2e, the row is discarded.

5 Point Relocation

Terrain simplification, in general, results in perturba-

tions in the terrain shape. This raises an important

question: how should the entity positions be perturbed

in order to accompany changes in the terrain shape?

Should they be left unchanged, projected to the new

terrain, or changed in some other manner? In this sec-

tion, we present our approaches to this question under

the label of point relocation.

For comparison, the point relocation methods de-

scribed in the following sections are tested against the

following three relocation methods (see Figure 6):

1. Projection relocation, the accepted method for

point relocation (for instance, Ben-Moshe et al. [4]

have it built-in into their problem definition) which

projects all entities vertically onto the simplified ter-

rain.

Before After

(a) Illustration of the projection function.

Before After

(b) Illustration of the identity function.

Before After

(c) Illustration of the half projection func-
tion.

Fig. 6 Illustration of the behaviour of our comparison relo-
cation methods, applied after terrain simplification. Entities
are shown as triangles before relocation (in pink) and after
(in red).

2. Identity relocation, which leaves the entity posi-

tions unchanged. We use this relocation method to

provide an LoS accuracy baseline for our tests.

3. Half projection relocation, a custom relocation

method that combines identity and projection relo-

cation, projecting entities in the half-space beneath

the simplified terrain up onto the simplified terrain.

This method sacrifices total LoS query accuracy in

order to favour true positives.

We first use an optimization framework to show

that room for improvement exists over the projection

method. Afterwards, we introduce a generalization of

projection relocation for regular terrains, and apply our

optimization framework as part of a pre-processing step

to maximize LoS query accuracy.

5.1 Optimization Problem

We wish to find a relocation function R such that the

accuracy of a LoS algorithm A on relocated points R(P )

over a simplified terrain S(T ) (i.e. Acc(AS,R, T, P )) is

maximized. That is, we wish to solve an optimization

problem:

min
R

∑
i 6=j

|VT (pi, pj)−A(S(T ), R(pi), R(pj))|. (1)
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(a) The entity’s local
neighbourhood of candi-
date positions (shown in
green) is discretized.

(b) The position that pro-
duces the highest accu-
racy is determined.

(c) The entity is relo-
cated.

Fig. 7 Illustration of our iterative method in 2D. The en-
tity’s current position is highlighted in red. The terrain is
represented by the curved line.

Note that the presence of VT in Equation 1 implies

the visibility test results are already known, meaning

that direct use of such an optimization is impractical

for most purposes. Additionally, a closed form solution

to the problem does not appear to exist.

5.2 Estimation Methods

While a closed form solution does not appear to exist,

the optimal solution to Equation 1 can be estimated

using discrete, iterative methods. We present here our

methods for estimating the optimal solution, designed

to emulate iterative numerical optimization techniques

in a discrete geometric setting (see Figure 7).

For each method, we begin with an initial guess at

the optimal entity positions. Iteratively, we refine these

positions until no further improvements in LoS accu-

racy can be found or a maximum number of iterations

is reached.

The pre-simplification entity positions are used as

an initial first guess at the optimal post-simplification

positions. At each iteration, we discretize a grid of can-

didate positions about each entity, test the LoS ac-

curacy at each candidate position, and then relocate

the entities to the candidate position that produces the

highest accuracy.

While none are guaranteed to determine the optimal

solution, we have tested four different implementations

of this general method. These methods are

1. Jacobi iterative estimation, in which we dis-

cretize the candidate grid using a constant distance

and relocate entities once the new positions have

been identified for all entities.

(a) Local neighbourhoods of
candidate positions are dis-
cretized using the distance to
the simplified terrain (shown by
the dashed line).

(b) Entities are relocated one at
a time.

Fig. 8 Illustration of the projection distance approach in
2D. The entity’s current position is highlighted in red, with
candidate positions shown in green. The terrain is represented
by the curved line.

2. Gauss-Seidel iterative estimation, in which the

candidate grid is discretized using a constant dis-

tance and each entity is relocated once its new po-

sition is identified.

3. Decreasing distance iterative estimation, in

which the candidate grid distance decreases by a

constant factor with each iteration and each entity

is relocated once its new position is identified.

4. Projection distance iterative estimation, in-

spired by projection relocation. The candidate grid

is discretized using the vertical distance between the

entity and the simplified terrain (i.e. the distance of

projection) and each entity is relocated once its new

position has been identified. See Figure 8.

Among our estimation methods, our results have

shown that projection distance relocation preserves LoS

accuracy the strongest, and indicate that room for im-

provement in LoS query accuracy does exist over the

projection relocation method.

5.3 Point Relocation by Residual Vectors

We have attempted to realize these improvements in

LoS accuracy using a point relocation approach based

on multiresolution residual vectors, which we refer to

as residual vector relocation.

Reverse subdivision simplifies a curve of fine points

f to a curve of coarse points c such that Pc ≈ f . Since

Faber subdivision does not change the shape of the
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curve, the changes in geometry due to simplification are

encapsulated by the residual vectors r = Pc−f . Hence,

these residual vectors can be used as translation vectors

to project entities from the original curve to the sim-

plified curve. Notice that f + r = f + (Pc − f) = Pc,

which are points on the simplified curve.

Although the residual vectors will project entities

onto the simplified curve, this projection is not neces-

sarily completely vertical. Residual vectors reflect changes

in the (x, y, z) coordinates between f and Pc while pro-

jection only reflects changes in one coordinate (namely,

the z coordinate). Hence, residual vector relocation is

a generalization of projection.

The residual vectors r = Pc − f can be computed

directly from the original and simplified curves by

ri =

{
c i

2
− fi if i is even

1
2cb i

2 c
+ 1

2cd i
2 e
− fi if i is odd.

This can be generalized to n steps of subdivision as

follows: let ck be the vector of coarse points after n −
k applications of reverse subdivision on f and P k be

the subdivision matrix for the given size of ck, for k =

0, . . . , n− 1. Then the residual vectors are given by r =

Pn−1 · · ·P 1P 0c0 − f , or equivalently,

ri = (1− w) · cb i
2n c

+ w · cd i
2n e
− fi

where w = i mod 2n

2n .

Further generalization to regular surfaces (e.g. height

map terrains) results in the following residual vectors:

ri,j = (1− wj)(1− wi) · cb i
2n c,b

j
2n c

+

(1− wj)wi · cd i
2n e,b

j
2n c

+

wj(1− wi) · cb i
2n c,d

j
2n e

+

wjwi · cd i
2n e,d

j
2n e
− fi

where wi = i mod 2n

2n and wj = j mod 2n

2n .

Notice that the residual vectors are only defined at

the vertices of the original terrain. Entities that do not

lie at one of the original terrain’s vertices (i.e. that are

not in f) lie over an edge or face of the original terrain.

In these cases, we take a barycentric combination of the

residual vectors of the edge’s endpoints/face’s corner

points to be the entity’s translation vector.

Taken all together, these vectors define a vector

space over the original terrain that allows us to deter-

mine relocation vectors for each entity in real time.

5.4 Pseudo-Optimized Residual Vector Relocation

For further improvements in LoS query accuracy, we

propose the use of iterative estimation in a pre-processing

step to estimate the optimal relocation vectors. Here,

we apply a process similar to line-search optimization,

estimating the optimal relocation vector in the direction

of the residuals. As we again cannot guarantee that the

optimal solution is found, we refer to this method as

pseudo-optimized residual vector relocation.

Our pre-processing step uses iterative estimation to

estimate optimal scaling factors for each residual vec-

tor. Each residual vector corresponds to a vertex of the

original terrain. To prevent the run-time of the pre-

processing step from spiralling out of control on large

terrains, we calculate scaling factors for only a subset of

the residual vectors (those corresponding to vertices of

the simplified terrain) and compute LoS accuracy using

a local neighbourhood of entities for each vector.

We consider a set of entities ei that exists solely for

the purposes of the pre-processing step; one for each

vertex of the simplified terrain, initially placed at each

vertex’s corresponding position on the original terrain

(say, e0i ). For each entity ei, we estimate its optimal po-

sition along the line passing through ei in the direction

of its residual vector ri, with LoS accuracy computed

relative to a local neighbourhood of entities ej .

Given optimized positions for each entity ei, we can

determine optimized relocation vectors for the ei. These

relocation vectors have the form siri, where si is a scal-

ing factor. Finally, we distribute scaling factors to all

the relocation vectors in the vector field and scale them.

That is, at each iteration (see Figure 9), the follow-

ing happens for each ei:

1. Consider a local neighbourhood of entities ej around

ei.

2. Candidate positions for ei are discretized along a

line passing through ei in the direction of ri. (Note

that if ri is zero, all candidate positions will be lo-

cated at the same position as ei.)

3. The candidate position (say c) for ei that produces

the highest LoS accuracy with respect to the ej is

identified.

4. The scaling factor si =
(c−e0i )·ri

ri·ri , such that e0i +

siri = c, is calculated.

5. The position of ei is updated to c.

The iterations continue until no further improve-

ment can be found, or a maximum number of iterations

is reached. Once the si have all been calculated, each

relocation vector ri is scaled by si (i.e. r′i = si · ri).
Residual vectors that do not correspond to one of

the simplified terrain’s vertices lie over an edge or face of
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ei

(a) Entity ei is consid-
ered, along with a local
neighbourhood of entities
ej .

ri

ei

(b) Candidate positions
for ei are determined
along a line in the direc-
tion of ei’s residual vec-
tor, ri.

ri

ei

siri

c

(c) The candidate posi-
tion producing the high-
est accuracy, c, is identi-
fied. The scaling factor si
is found.

si

(d) The scaling factor si
is distributed to the relo-
cation vectors in a local
area about ei.

Fig. 9 Illustration of the optimized residuals pre-processing
step.

the simplified terrain. In these cases, we bilinearly inter-

polate the scaling factors of the edge’s endpoints/face’s

corner points to find a scaling factor for the relocation

vector.

We have found point relocation to be a powerful tool

for improving LoS accuracy after simplification. How-

ever, there are impacts on accuracy introduced by sim-

plification that no general purpose relocation scheme

can address. For instance, consider a region of the orig-

inal terrain simplified to a single face. Under many re-

locations, all the entities over that region will be able to

see other, regardless of their initial visibility relations.

Global simplifications, which address global speed con-

cerns for LoS queries, wreak havoc on local LoS accu-

racy.

Point relocation, by itself, cannot address these ac-

curacy issues. A new algorithmic approach, however,

can.

6 Hierarchical LoS Algorithm

For our intended application — real-time simulations,

particularly military battlefield simulations — LoS queries

need to be fast and accurate in local areas as combat-

ants converge on strategic locations and battlefields.

Limitations on effective sight line distance can rein-

force the importance of fast local queries. However, on

a global scale — when combatants are spread out and

do not have limitations on sight line distance — LoS

queries also need to be fast.

Here we present an algorithm that only speeds up

LoS queries expected to be too slow, as determined by

a user-defined distance threshold. Our algorithm com-

bines several different techniques, using their respective

strengths for improved LoS query computation.

6.1 Bresenham’s Algorithm and the Quad Tree

Algorithm

Bresenham’s line algorithm is well-known within

the computer graphics community as an algorithm for

plotting a line segment on a raster image. As it traverses

the raster cells between the line segment’s endpoints,

the algorithm tracks the error between the center of the

current raster cell and the actual line segment. At each

step, the raster cell that minimizes the error is identified

and moved to. The algorithm can be easily adapted

to serve as a line-of-sight algorithm on regular terrains

(which are raster grids of elevation values) by replacing

the default drawing behaviour with a height comparison

between the terrain’s elevation and the height of the

sight line [23].

Bresenham’s algorithm has no memory overhead,

and its run-time is O(d), where d is the L1-norm (or

Manhattan distance) between the entities over the reg-

ular terrain grid. Hence, the Bresenham algorithm runs

fastest when the entities are near to each other (relative

to the terrain grid) or when the entities cannot see each

other (e.g. when the terrain has many sharp features).

Duvenhage’s min/max quad tree algorithm [10]

uses a quad tree to quickly cull regions of the terrain

from the query computation. At each node of the quad

tree, the maximum and minimum elevations of its child

nodes are stored (leaf nodes contain the elevation for

a grid cell of the regular terrain). If the sight line lies

completely above a node’s maximum elevation, we can

avoid testing the child nodes. If the sight line lies par-

tially below a node’s minimum elevation, then the query

may return ‘not visible’ at once. If neither case holds,

the child nodes must be visited. Fast child node in-

tersection may be accomplished using the ray tracing

technique in [17].

The quad tree algorithm features a quad tree over

the regular terrain as memory overhead, and runs in

O(logd) time on average, O(dlogd) in the worst case

(again, d is the Manhattan distance between entities).

Due to culling, the algorithm works best on relatively
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flat terrains. Lack of overhead for Bresenham’s algo-

rithm makes it faster than the quad tree algorithm in

cases where d is sufficiently small.

Using regularity-preserving terrain simplification, the

Manhattan distance d can be reduced between all pairs

of entities, which speeds up each algorithm and reduces

memory usage. The regularity-preserving simplification

methods described in this paper cut d in half with each

application.

6.2 Algorithm Details

Our hierarchical LoS algorithm seeks to combine

the strength of Bresenham’s algorithm given small d,

the strength of the quad tree algorithm given large d,

and the power of speed-ups due to simplification. It

is based on a simple observation: given a LoS query,

we can choose, based on its expected execution time, a

LoS algorithm and simplified terrain that will best meet

the application’s run-time and accuracy requirements.

In other words, we can take a level-of-detail approach

to LoS queries: queries expected to take too long to

compute can be computed with less fidelity.

Using regularity-preserving terrain simplification, we

generate a hierarchy of simplified regular terrains (say

T1, T2, . . . , Ttop where T1 = T ) and add a min/max

quad tree on one of the levels (say Ttree). Two distance

thresholds, tB and tQ, are defined by the user and deter-

mine when d is sufficiently small to use the Bresenham

algorithm (d ≤ tB) and when it is sufficiently large to

use the quad tree algorithm (d > tQ).

If d > tQ, then the query is computed using the

quad tree algorithm on Ttree. Otherwise, the query is

computed with Breseham’s algorithm on Ti, where i ∈
Z+ is the smallest value such that ( 1

2 )i−1d < tB . We

take the level index tree to be dlog2(
tQ
tB

)e+ 1, to ensure

consistent accuracy with queries as d→ tQ.

Pseudocode for the algorithm is given in Algorithm 1.

Algorithm 1 HierarchicalLoS(T, p1, p2) :

Determine grid indices (i1, j1) for point p1 on T1

Determine grid indices (i2, j2) for point p2 on T1

k := 1
dist := sqrt((i2 − i1)2 + (j2 − j1)2)
if dist > tQ then

return QuadTreeLoS(Ttree, p1, p2)
else

while dist > tB AND k < top do
k := k + 1
dist := dist/2

end while
return BresenhamLoS(Tk, p1, p2)

end if

It is trivial to note that by setting tQ = ∞, or by

placing a sight line distance limitation < tQ, the algo-

rithm may be used without the quad tree.

6.3 Runtime Analysis

The average runtime of our algorithm is given piecewise

as

{
O(tB) when d ≤ tQ
O(log(d)) otherwise

and the worst case runtime is

{
O(tB) when d ≤ tQ
O(dlog(d)) otherwise.

Without the quad tree (i.e. with tQ = ∞), the

asymptotic run-time of the algorithm collapses down

to O(tB). Notably, this run-time is independent of the

terrain size and entity positions, hence, given a con-

stant tB and tQ = ∞, the algorithm can be run in

effectively constant time (albeit with significant drops

in accuracy).

We show the derivation for the algorithm run-time

assuming tQ =∞. The piecewise run-time given above

follows from this derivation and from the run-time of

the quad tree algorithm.

Let di denote the Manhattan distance between the

sight line’s endpoints over Ti. Notice that d1 = d and

di = ( 1
2 )i−1d for all i = 1, 2, . . . , top.

The bottleneck of the algorithm is the call to Bresen-

ham’s algorithm. Whenever di ≤ tB , we use the O(di)

time Bresenham line algorithm on Ti. Hence, the run-

time of our algorithm can be given piecewise as


O(d1) when d1 ≤ tB
O(d2) when 1

2 tB < d2 ≤ tB
· · ·
O(dtop) when 1

2 tB < dtop ≤ tB .

(2)

Notice that di ≤ tB in each case. Hence, we can

replace the O(di) by O(tB) in Equation 2 to yield


O(tB) when d1 ≤ tB
O(tB) when 1

2 tB < d2 ≤ tB
· · ·
O(tB) when 1

2 tB < dtop ≤ tB .

(3)

Equation 3 collapses down to

O(tB), (4)
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which is what we wanted to show.

It should be noted that, since the Bresenham line al-

gorithm reaches its worst-case run time when the sight

line does not intersect the terrain, the performance of

our algorithm will deteriorate quickly on terrains with

large, flat regions. Indeed, in such cases it would be wise

to use the min/max quad tree algorithm alone.

7 Results

In this section we describe our results for the LoS query

accuracy resulting after application of terrain simpli-

fication and point relocation, in addition to the LoS

accuracy and run-time of our hierarchical algorithm.

All distances given are relative. A distance of 1 is

taken to be the horizontal distance between neighbour

vertices in the original terrain.

7.1 Simplification and Relocation Results

For each pair of simplification method and point relo-

cation method, we computed the resulting LoS query

accuracy on five 120× 120 sized height map terrains at

three levels of simplification — 25%, 6%, and 1.5% of

the original terrain size (corresponding to 1, 2, and 3

applications of reverse subdivision) — with limitations

on sight line distance (i.e. the Manhattan distance d be-

tween entities) and at 1.5% of the terrain size without

such limitations. In the limited case, we used a maxi-

mum sight line distance of 30.

Queries were performed between fifty entities (for a

total of 1,225 sight lines) scattered about the terrain in

six random configurations. The observer position O(p)

of each entity was offset from the entity’s position by a

height of 0.1.

For these tests, we converted our DEM terrains to

polygonal meshes by forming faces between the eleva-

tion values, and used a ray casting approach to conduct

LoS queries. This made it possible to use a common LoS

algorithm on both the regular and irregular simplified

terrains.

Preliminary tests on our six terrains indicate that

a feature weight of w = 0.75 best preserves LoS query

accuracy when using the feature-aware scheme. Hence,

in our tests we use a feature weight of 0.75.

Our iterative estimation methods discretized a 5 ×
5×5 grid of candidate positions surrounding each entity

with a maximum of ten allowed iterations. Results are

shown only for the projection distance method, which

performed the strongest.

For our pseudo-optimized residual vector relocation

method, those entities ej considered to be in the local

neighbourhood of an entity ei were those lying within

three simplified faces of ei. At each iteration, nineteen

candidate positions were uniformly discretized along

the line segment between ei−2(1− si)ri and ei + 2(1−
si)ri, where si is ei’s current scaling factor and ri is

ei’s residual vector. A maximum iteration count of 5

was allowed.

See Tables 1 and 2 for the average LoS query ac-

curacy of our simplification/point relocation pairs with

and without sight line limitations, respectively.

These results indicate that regularity-preserving ter-

rain simplification preserves LoS query accuracy well,

with comparable accuracy rates to our results for the

irregular simplification methods. The accuracy differ-

ences between the regularity-preserving methods, how-

ever, appear to be fairly minimal, although subsampling

appears to perform the worst of them.

The strong accuracy rates exhibited by the projec-

tion distance method (see Table 2) indicate that room

for improvement exists over the projection method, how-

ever in practice it is difficult to achieve these improve-

ments. Our residuals relocation methods offer slight im-

provements over projection relocation at high degrees of

simplification, with and without sight line limitations.

7.2 Hierarchical Algorithm Results

Our hierarchical algorithm was tested using local least

squares reverse Faber subdivision as a simplification

method and half projection as a relocation method (in

order to favour true positives). Distance thresholds tB =

40 and tQ = 320 were used. Our choice of tB was

motivated by preliminary tests, which indicated that
the performance of Bresenham’s algorithm falls behind

the quad tree algorithm when d > 40. A threshold of

tQ = 320 allows four levels of the hierarchy to be used

with Bresenham’s algorithm. As our results in the pre-

vious section show, four levels can be used without too

much loss in accuracy.

All results were obtained on a computer with an

Intel Core i7 CPU, 12 GB of RAM, and a 64-bit archi-

tecture running Windows 7.

Tests were conducted on three different large height

map terrains (refer to Figure 10) using random distri-

butions of 300 entities (44,850 sight lines), with and

without sight line distance limitations. In the limited

case, we used a maximum sight line distance of 320.

Results for Bresenham’s algorithm and the hierarchi-

cal approach were compared against the quad tree al-

gorithm, which was considered to produce the correct

LoS query results.

Refer to Table 3 for the average accuracy and run-

time of each LoS algorithm under these test settings.
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(a) Results for simplification to 1.5% of terrain size.

Residuals

Optimized

Residuals Identity Projection

Half

Projection

1.50%

Subsampling 72.50% 68.14% 68.16% 73.01% 67.13%

LLS Faber 73.85% 75.43% 72.83% 72.98% 68.97%

GLS Faber 73.05% 73.03% 70.07% 72.83% 68.90%

Feature Aware 72.79% 73.25% 70.36% 73.06% 69.10%

QEC 71.41% 75.57% 71.20%

Greedy Cuts 62.79% 61.80% 57.32%

Greedy Insertion 64.43% 65.31% 63.43%

(b) Results for simplification to 6% of terrain size.

Residuals Identity Projection
Half
Projection

6.00%

Subsampling 82.78% 80.20% 82.95% 80.92%

LLS Faber 83.06% 82.26% 82.39% 82.25%

GLS Faber 83.22% 81.99% 83.30% 82.87%

Feature Aware 82.71% 82.12% 83.05% 82.87%

QEC 81.36% 84.62% 82.98%

Greedy Cuts 73.47% 77.68% 75.04%

Greedy Insertion 80.00% 82.85% 83.16%

(c) Results for simplification to 25% of terrain size.

Residuals Identity Projection
Half
Projection

25.00%

Subsampling 90.56% 90.74% 90.79% 91.39%

LLS Faber 89.50% 89.56% 90.01% 91.32%

GLS Faber 89.48% 89.42% 90.12% 91.44%

Feature Aware 89.23% 89.36% 89.56% 90.91%

QEC 89.24% 91.09% 92.01%

Greedy Cuts 84.62% 88.67% 89.18%

Greedy Insertion 91.60% 92.78% 94.00%

Table 1 LoS query accuracy results for terrain simplification/point relocation pairs with sight line limitations.

Residuals

Optimized

Residuals Identity Projection

Half

Projection

Projection

Distance

1.50%

Subsampling 82.99% 80.54% 80.53% 82.94% 78.51% 95.05%

LLS Faber 83.67% 86.23% 84.38% 82.88% 80.29% 95.82%

GLS Faber 83.16% 83.79% 82.62% 82.77% 79.93% 95.31%

Feature Aware 83.44% 84.30% 82.91% 83.72% 81.15% 95.58%

QEC 81.93% 84.67% 81.72% 94.41%

Greedy Cuts 76.17% 77.31% 72.40% 92.58%

Greedy Insertion 80.50% 79.00% 77.10% 93.68%

Table 2 LoS query accuracy results for terrain simplification/point relocation pairs without sight line limitations at 1.5% of
terrain size.

These results show the hierarchical algorithm to be

quite fast, with a fairly minimal loss of accuracy. On

average the hierarchical approach was 40% faster than

the quad tree algorithm, and in our tests never dropped

below 97% accuracy.

8 Conclusions

We have examined regularity-preserving terrain sim-

plification in the context of speeding-up line-of-sight

queries, and paired it with the study of point relo-

cation as a means for improving LoS query accuracy.

Novel techniques, including a feature-aware reverse sub-

division scheme and residual vector-based point relo-

cation method, have been presented. Together, these

techniques can be used to speed-up LoS queries while

keeping accuracy reasonably high.

We have presented a hierarchical line-of-sight algo-

rithm that is both fast and accurate, and can prove use-

ful in applications with real-time speed requirements.

As future work, it may be interesting to consider differ-
ent metrics other than a distance threshold for deciding

whether a LoS query will take too long, and additionally

the effect of dynamically changing the distance thresh-

olds to meet application needs on the fly.

Although we place entities slightly above the terrain

before simplification, the distance is kept constant and

small. It would be interesting to consider the impact

of our research in situations where entities are allowed

to be airborne. Whether or not the same results will

hold remains an open question. Additional work may

also examine the impact of different metrics for LoS

accuracy.
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(a) Results for algorithms with sight line limitations.

Bresenham’s

Algorithm

Hierarchical

Algorithm

Min/Max Quad

Tree

Camp LeJeune

Average of Time (ms) 78.9 25.8 42.2

Rate of True Positives 97.30% 98.40% 100.00%

Rate of True Negatives 99.88% 97.39% 100.00%

Average of Total Accuracy 98.75% 97.84% 100.00%

Kingston

Average of Time (ms) 17 10.9 55

Rate of True Positives 93.69% 91.44% 100.00%

Rate of True Negatives 99.89% 99.03% 100.00%

Average of Total Accuracy 99.80% 98.91% 100.00%

Rocky Mountains

Average of Time (ms) 31.6 26.2 120.7

Rate of True Positives 90.77% 87.21% 100.00%

Rate of True Negatives 99.84% 99.28% 100.00%

Average of Total Accuracy 99.81% 99.23% 100.00%

(b) Results for algorithms without sight line limitations.

Bresenham’s

Algorithm

Hierarchical

Algorithm

Min/Max Quad

Tree

Camp LeJeune

Average of Time (ms) 884.9 415 486.7

Rate of True Positives 97.35% 99.40% 100.00%

Rate of True Negatives 99.84% 96.09% 100.00%

Average of Total Accuracy 98.98% 97.25% 100.00%

Kingston

Average of Time (ms) 473.9 449.8 571.1

Rate of True Positives 83.53% 80.06% 100.00%

Rate of True Negatives 99.90% 98.96% 100.00%

Average of Total Accuracy 99.71% 98.74% 100.00%

Rocky Mountains

Average of Time (ms) 361.9 168 433.7

Rate of True Positives 81.79% 72.07% 100.00%

Rate of True Negatives 99.97% 99.79% 100.00%

Average of Total Accuracy 99.96% 99.76% 100.00%

Table 3 LoS query accuracy and run-time results for line-of-sight algorithms.
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