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Abstract Conventional Discrete Global Grid Systems are well suited for storing and index-
ing data on the Earth’s surface, but not for data above and below the surface. To properly
support volumetric data, a 3D version of this data structure is needed. One promising ap-
proach for this is the Spheroid Degenerate-Octree Grid (SDOG), first proposed by Yu and
Wu in 2009. Compared to other methods, this grid does a good job of ensuring cells have
close to equal volume, which is important for ensuring a consistent spatial resolution for
the entire Earth. In this paper, we introduce modifications that can be made to the original
SDOG subdivision method in order to further improve its volume preserving properties. We
perform a brief analysis of the number of cells in an SDOG grid and use this analysis to
develop both a stationary and non-stationary modified subdivision scheme. To index the re-
sulting grids, we derive a closed form mapping between conventional SDOG and the grids
resulting from our modified subdivision rules. We evaluate the effectiveness of our modifi-
cations using two different measures of volume preservation and measure the affect these
modifications have on the compactness of cells. A weighting factor allows us to balance
the trade off between volume preservation and cell compactness to best meet the needs of
different applications. Our method can produce a grid where all cells, except those at the
poles, have exactly equal volume.
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1 Introduction

The amount of data available about the Earth is extensive, and more data is being collected
daily. With such volumes of available data, it is important to develop methods for the in-
tegration, processing, visualization, and analysis of said data in order to make informed
decisions about the Earth. While two-dimensional (2D) maps have long been used as a com-
mon reference model when dealing with Earth data, they suffer from distortions that result
from projecting the surface of the Earth onto the plane. This causes the shape and size of
different regions of Earth to be misrepresented and can affect the accuracy and efficiency of
analysis if one is not careful.

This is the main motivation behind the approach of Digital Earth (i.e. curved Earth),
where data is assigned and accessed on a three-dimensional (3D) model of the surface of
the Earth—usually approximated using a sphere or ellipsoid. Not only does this provide a
more intuitive and realistic representation of the Earth, it also helps minimize projection
errors by providing a closer approximation of the surface. By discretizing the surface of
the Earth into a set of cells, data can be associated with different regions of the Earth via
assignment to appropriate cells. These cells are given unique indices that can be used for
efficient data access and adjacency queries [4]. Such discretization with a multiple resolution
hierarchy of mostly regular cells are referred to as Discrete Global Grid Systems (DGGS)
and are the foundation for many state-of-the-art Digital Earth systems [11, 15]. The Open
Geospatial Consortium (OGC) has provided an abstract specification of DGGSs for use by
the geospatial community [17].

While much of the available Earth data pertains to the surface, there also exists a large
amount of data available about the atmosphere and regions below the surface. Some ex-
amples include atmospheric properties, lithospheric properties, earthquake locations, air-
craft/satellite paths, and underground utility locations. Supporting all types of Earth data,
including these volumetric data sets, is important for creating a complete and holistic model
of the Earth. Flattening data onto the surface of the Earth allows integration with a DGGS,
however this comes with consequences. For example, an important benefit of DGGSs is
the spatial relationship between data they provide, and by flattening we lose that relation-
ship between data at different depths and altitudes. This makes many important queries less
efficient, as data at all depths must be retrieved even if only a certain range is desired.

In order to address these issues, we need a more sophisticated model of the Earth that can
represent not only the surface, but its entire volume. We call this Volumetric Digital Earth.
To handle the data associated with a Volumetric Digital Earth system, we need to discretize
the whole Earth as opposed to just the surface. Extending the DGGS, we can create a 3D
version of this data structure for Volumetric Digital Earth systems, or a 3D DGGS.

An important property for both DGGSs and their 3D counterparts is that cells at a given
resolution of the grid have close to equal sizes to one another. This ensures that each resolu-
tion of the grid represents the whole Earth at a certain spatial resolution and allows data to
be inserted into the grid at its native resolution. It is especially problematic if cell sizes vary
to the point that cells of a certain size appear at multiple resolutions of the grid, as this cre-
ates ambiguity as to which resolution of the grid best represents a certain spatial resolution.
Having uniformly sized cells is also useful for certain statistical queries, as it allows cell
data to be used directly without requiring normalization with respect to its area or volume.
We use the term volume preservation to refer to how similar in size the cells of a given 3D
DGGS are.

There are several additional properties that are also considered important for DGGSs
[11, 15, 20]. Perfectly achieving all desired properties is not possible, so in practice differ-
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ent systems will prioritize certain ones depending on the needs of the target application. In
addition to volume preservation, the other properties we are concerned with for this work
are cell compactness and efficient indexing. Compact cells give better sampling and prevent
data from regions far away being assigned to the same cell, and the indexing method of a
DGGS defines many important operations which allow efficient data retrieval, neighbour-
hood queries, and calculation of cell geometry by index inversion. Overall, we wish to create
a 3D DGGS characterized by good volume preservation while minimizing the impact on cell
compactness and the efficiency of indexing.

To accomplish this goal, we modify an existing 3D DGGS, the Spheroid Degenerated-
Octree Grid (SDOG), in order to improve the volume preservation properties of the resulting
grid. Our main contribution is a set of modifications to the subdivision rules of SDOG which
result in cells of more uniform volume across the entire grid. This is done by analyzing
the placement of the surfaces used for subdividing cells and finding ideal locations that
result in cells of the most uniform volume possible given certain constraints. To aid in this
analysis, we derive closed form expressions for the number of cells in the grid at any level of
subdivision. Since modifying the grid geometry necessitates changes to certain cell indexing
operations, we provide a forward and inverse mapping between a conventional SDOG grid
and our proposed modifications. This allows all indexing operations to be done with the
standard algorithms that have been developed for SDOG, as opposed to having to develop
new ones. The effect our modifications have on volume preservation is evaluated using two
separate metrics: one that measures the maximum difference in cell volumes, and one that
measures the distribution of volumes. We also measure the impact these changes have on the
compactness of cells using the notion of sphericity [23]. These results are all benchmarked
and compared to that of conventional SDOG subdivision.

The remainder of the paper proceeds as follows: Section 2 covers related works; Sec-
tion 3 covers the basics of SDOG, including analysis on the number of cells and formu-
lations for cell volume and surface area; Section 4 discusses our proposed modifications;
Section 5 details the forward and inverse mappings; Section 6 analyzes the results of our
modifications; and Section 7 concludes and provides possible areas for future work.

2 Related Work

When performing spatial modelling, analysis, and visualization on the sphere, there are
three main approaches that are commonly applied: projection, embedding, and the intrinsic
approach [12, 18]. While this classification was originally made for 2D methods on the
sphere, they are just as applicable to recent 3D methods.

Projection approaches work as the name would suggest, by projecting the surface of the
spherical Earth (S2) to the 2D Euclidean plane (R2) using some map projection. Standard
methods in R2 space are then used for modelling, data analysis, and visualization. This ap-
proach can be extended for 3D applications by extruding the plane to create a prismatoid
representation of the Earth. 2D maps have long been used for visualizing the Earth, with the
earliest projection methods dating to circa 500 BC [21]. Despite their long history of use,
projection comes with inevitable distortions that make them undesirable for many applica-
tions.

Embedding methods treat the surface of the sphere (for 2D applications) or the volume
of the sphere (for 3D applications) as a constrained subset of 3D Euclidean space (R3).
Again, standard methods in this Euclidean space are then applied for modelling, data anal-
ysis, and visualization of the Earth. This approach has been used in [8, 18], however these
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(a) (b) (c)

Fig. 1 One octant of a 3D LLG at a resolution of approximately 6° × 6° × 800 km viewed (a) from the
side, (b) from the front, and (c) at an angle. Note that cells near the pole and centre degenerate and are much
smaller than those near the surface and equator

works were largely limited to small scale objects or regions of the Earth. For large regions
or the entire Earth, this method becomes cumbersome as it does not respect the inherent
curvature of the globe.

Due to the largely spherical shape of the Earth, it becomes clear that it is desirable to
operate on data directly in spherical space. This is the approach adopted by intrinsic meth-
ods, performing operations in spherical space for either the surface, or the entire volume,
of the Earth. Some recent examples include techniques for offsetting spherical curves [2]
and multiresolution algorithms for spherical B-Spline [1] and NURBS [3] curves. Research
has also been done on developing better representations for rational points on the sphere, as
compared to conventional floating-point representations [5]. Intrinsic approaches typically
make use of a grid that is either defined directly on the sphere, or that closely approximates
it. Most DGGS, both 2D and 3D, fall into this category. Some of the benefits of DGGSs
are discussed in [11], and a detailed overview of DGGSs, along with a review of many
state-of-the-art systems, can be found in [15].

There are several existing 3D global grids, some of which are more suitable as a 3D
DGGS for Volumetric Digital Earth than others. Google Earth makes use of a radial octree,
or rocktree, centred on the Earth to handle 3D data [19]. However, this structure is built on a
projected model of the Earth and has inevitable distortions that we would rather avoid when
storing Earth data.

One of the most basic intrinsic grids is the 3D latitude-longitude grid (3D LLG), which
is created by dividing the sphere into constant steps of latitude, longitude, and radius (Fig-
ure 1). This type of grid is used in [6] to develop a global crust model, and in [29] to explore
P-wave velocity in the mantle. While this type of grid is simple in construction, the na-
ture of spherical coordinates leads to shrinking cells towards the poles and the centre of the
Earth. As a result, 3D LLGs have both poor volume preservation and cell compactness, and
because of this are not a good choice for a Volumetric Digital Earth application.

An attempt to solve the issues present with a simple 3D LLG is the Yin-Yang grid [13].
The grid is composed of two identical component grids, called the Yin and Yang grids,
which are rotated and placed on top of each other to fully cover the 3D space of the sphere.
These component grids are simply 3D LLGs 90° in latitude about the equator and 270° in
longitude. While this approach solves the issue of cells degenerating near the poles, it does
not address the cells near the centre of the Earth. Additionally, this method causes cells
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Fig. 2 One octant of an SDOG grid after four levels of subdivision viewed (a) from the side, (b) from the
front, and (c) at an angle. Compared to a 3D LLG, cells are much more uniform in size and have much better
compactness. Refer to Section 6 for a detailed analysis of the volume preserving and compactness properties
of SDOG

to overlap near the border of the Yin and Yang grids, which can lead to redundancy and
ambiguity when assigning data to cells. This approach has been successfully used for various
geodynamo and mantle convection simulations [13, 14, 22, 24], however, the overlapping
cells make this grid undesirable for more general Digital Earth applications.

Another possibility for a 3D DGGS is Logically Rectangular Grids for spherical do-
mains. Proposed by [9], the authors provide several different methods for creating these
grids, all of which are based on a mapping from a uniform voxel grid in R3 to the space
of a sphere. While one of these grids could be used as the foundation for a 3D DGGS,
the intended use of the grids was in finite volume methods for solving partial differential
equations and were designed with that in mind.

One promising approach for creating a 3D DGGS is the Spheroid Degenerated-Octree
Grid (SDOG) (Figure 2) [28], which this work expands upon. The resulting grid of this
method does a relatively good job of preserving the volume and compactness of cells and
has been used successfully in the modelling of large-scale spatial objects [26] and multi-
scale visualizations of the lithosphere [27]. The method starts by dividing the sphere into
eight identical octants as starting cells. Each cell is then split into children cells by using
splitting surfaces at the midpoint between the maximum and minimum radius, latitude, and
longitude of the cell. Each cell is split into either four, six, or eight children depending on if
its degenerate at the centre, degenerate at a pole, or a normal (non-degenerate) cell respec-
tively. Due to the desirable properties of the grid and its demonstrated use in Digital Earth
applications, it is a good candidate for a 3D DGGS. There exists, however, the potential to
improve the results of this technique. We take the basic approach of SDOG and propose
modifications to the subdivision rules that result in better volume preserving properties than
that of the original method.

Another grid similar to SDOG is the Sphere Shell Space 3D Grid [10], which also pro-
poses degenerate octree subdivision for cells to better preserve volume. This method makes
use of several individual sphere shell grids, as opposed to a single spherical grid, each one of
which can represent a certain radial volume of the Earth. The exact volume preserving prop-
erties of this grid, however, are not discussed. It also has not been used as extensively for
Digital Earth applications when compared to SDOG, and for these reasons we have chosen
to base this work on the latter.
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Fig. 3 Location and extent of splitting surfaces in SDOG subdivision for (a) SG cells, (b) LG cells, and (c)
NG cells. Only NG cells have all three splitting surfaces fully subdivide the cell into eight children, and make
up the majority of cells as the grid becomes more refined. Adapted from [28]

3 SDOG

We first provide a brief explanation of SDOG construction and refinement as presented
in [28]. SDOG is an extension of the traditional octree to a spherical, as opposed to Eu-
clidean, volume. A sphere with twice the radius of the Earth is initially divided into eight
equal octants via the equatorial plane and two perpendicular meridian planes. These octants
are taken to be the coarsest cells of the grid and are then subdivided to create more fine dis-
cretizations of the sphere. An SDOG octant after four subdivisions can be seen in Figure 2.

SDOG cells (including octants) are subdivided using the midpoint of each spherical
coordinate: latitude, longitude, and radius. These midpoints create splitting surfaces that can
be used to split parent cells into smaller children cells. To prevent the degeneration in cell
compactness and size near the poles and centre of the sphere seen in 3D LLGs (Figure 1),
the extent of these splitting surfaces and the number of resulting children cells depends
on the shape, or class, of cell that is being divided. The splitting surfaces for each type of
SDOG cell are shown in Figure 3. We call a splitting surface symmetric if it creates the same
number and type(s) of cells on both sides; otherwise we call it degenerate.

Cells that extend to the centre of the sphere and to one of the poles are referred to as
Sphere-degenerated Grid (SG) cells (Figure 3a) and include the original eight octants. For
these cells, the longitudinal splitting surface does not extend beyond the latitudinal one in
the direction towards the pole. Additionally, neither the latitudinal nor longitudinal splitting
surfaces extend beyond the radial one in the direction towards the centre of the sphere. The
result of this subdivision is four children cells: another SG cell, one Latitude-degenerated
Grid (LG) cell, and two Normal Grid (NG) cells. LG and NG cells are described below.
Only the longitudinal splitting surface for SG cells is symmetric.

LG cells (Figure 3b) are similar to SG ones, except that they only extend to one of the
poles and not the centre of the sphere. Therefore, the longitudinal splitting surface does not
extend beyond the latitudinal one in the direction towards the pole. This subdivision results
in six children cells: two LG cells and four NG cells. The longitudinal and radial splitting
surfaces for LG cells are symmetric.

NG cells (Figure 3c) extend to neither the pole nor the centre of the sphere and make
up the majority of SDOG cells. These cells are fully subdivided into eight children NG
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cells and are the regular case for SDOG subdivision. All splitting surfaces for NG cells are
symmetric.

3.1 SDOG Indexing

In order to identify and distinguish the cells of a grid, there needs to be a method to assign
a unique index to each cell. A good indexing scheme will allow for efficient data insertion,
retrieval, and manipulation via a set of queries. Examples of some of these queries are: point
to cell, which give the index of the cell containing a given point; index inversion, which
calculates a cell’s location and geometry from the index; neighbourhood queries; and in the
case of a hierarchical grid, hierarchy traversal to find parent and children cells.

Due to the fact that SDOG subdivision is based on the midpoints of spherical coordi-
nates, an indexing scheme that is efficient for many of the above operations can be eas-
ily developed. At any subdivision level, k, each cell can be given an integer index in each
spherical coordinate ranging from zero to 2k− 1. To address the degenerate subdivision of
certain cells, these integer indices are modified appropriately with divisions by powers of
two, which can be done quickly with bit shift operations. The integer indices can then be
linearized by various methods, one good choice being a Z-order curve [16] as used in [28].
A more detailed description of degenerate Z-order indexing for SDOG grids, including al-
gorithms for point to cell and index inversion operations, can be found in [25].

3.2 Number of SDOG Cells

Being able to analyze the number of cells in the grid at each level of subdivision is useful not
only for measuring volume preserving properties—such as quickly calculating the average
cell volume—but also for analyzing the behavior of the grid as the level of subdivision
increases. This type of analysis will prove useful in informing decisions about how to modify
subdivision to improve volume preservation.

Due to the degenerate nature of SDOG subdivision, calculating the number of cells in
the grid is more complicated than a simple exponential formulation. Despite this, we can
use the above subdivision rules to derive recursive definitions for the number of cells in an
SDOG grid (or a single octant) at a given level of subdivision. Let S(k), L(k), N(k), and
T (k) be the number of SG, LG, NG, and total cells of an SDOG octant at subdivision level
k, respectively. There is only ever one SG cell in an SDOG octant, so trivially

S(k) = 1. (1)

We know each LG cell produces two new LG cells, and that the SG cell produces one new
LG cell. From this we can say

L(k) = 2L(k−1)+1 and L(1) = 1.

Similarly, each NG cell produces eight new NG cells, each LG cell produces four, and the
SG cell produces two. Thus

N(k) = 8N(k−1)+4L(k−1)+2 and N(1) = 2.
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L(k) is a linear non-homogeneous recurrence which can be solved with standard techniques
[7]. Solving and substituting into N(k) we get another linear non-homogeneous recurrence
which can be solved similarly. Finally, we get the closed forms:

L(k) = 2k−1, (2)

N(k) =
1
21

(
7∗2k +8k+1 +6

)
−2k, and (3)

T (k) = S(k)+L(k)+N(k) =
1
21

(
7∗2k +8k+1 +6

)
. (4)

As far as we are aware, these formulations have not been provided in any of the existing
literature on SDOG.

3.3 Geometry of SDOG Cells

In order to measure the volume preservation properties of SDOG and its modifications, it is
necessary to be able to measure the volume of individual cells in the grid. Since each SDOG
cell can be expressed as a range of each spherical coordinate (latitude φ , longitude λ , and
radius r), calculating the volume of an individual cell is a straightforward task. Note that we
use the geographic convention for spherical coordinates in this paper. Let the subscripts 2
and 1 denote the maximum and minimum of a given spherical coordinate for an SDOG cell,
then the volume is given by [28]

V =
1
3
(λ2−λ1)

(
r3

2− r3
1
)
(sinφ2− sinφ1) . (5)

In addition to the volume of a cell, surface area is another useful property to be able
to measure. Combined with the volume of cells, this allows us to measure the compactness
of cells, which we use in Section 6 to help evaluate the consequences of our modifications.
From the fact that SDOG cells are subdivided using spherical coordinates, each face of a
cell is a section of a simple geometric shape. Faces created by radial splitting surfaces are
spherical, with surface area given by

r2 (λ2−λ1)(sinφ2− sinφ1) . (6)

Faces created by longitudinal splitting surfaces are the difference of two circular sectors,
and have an area of

1
2
(φ2−φ1)

(
r2

2− r2
1
)
. (7)

Finally, faces created by latitudinal splitting surfaces lie on a cone, with a surface area of

1
2

cosφ (λ2−λ1)
(
r2

2− r2
1
)
. (8)
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Large Volume

Average Volume

Small Volume

Fig. 4 Distribution of cell volumes in an octant after four levels of conventional SDOG subdivision

4 Modified SDOG Subdivision

The main goal of this work is to modify SDOG in such a way as to improve volume preser-
vation while minimizing the impact on other desired properties of the grid. To aid in this
task, we have developed a visualization framework for displaying and modifying SDOG
grids. This framework allows for changes to subdivision to be quickly implemented and
allows visual analysis of said modifications. All of the figures in the paper (except for the
charts) were created using the output of this framework. As an example and a baseline, the
distribution of cell volumes in a conventional SDOG grid is visualized in Figure 4.

As previously discussed, in conventional SDOG subdivision the location of the different
splitting surfaces is always chosen to be at the midpoint of the respective spherical coordi-
nate; we question if this should always be the case. For an octree in Euclidean space this
type of subdivision is desirable, as it generates children cells of identical size and shape. In
spherical space, however, this property does not transfer. Using midpoints to subdivide cells
makes for a simple subdivision scheme, but it makes no guarantees about the shape or size
of the resulting children cells.

By allowing the location of the splitting surfaces to be adjusted, we can modify the shape
and size of children cells and as a result affect the volume preservation, compactness, and
other properties of the grid. Let cs be the location of the splitting surface, where c is one of
{φ ,λ ,r}, then one way to express the location of the splitting surfaces used for subdivision
is as a convex combination of maximum and minimum values

cs = αc2 +(1−α)c1, α ∈ (0,1) , (9)

where we call α the splitting factor. Conventional SDOG used midpoints (i.e. α = 1
2 ) for

each spherical coordinate when subdividing, regardless of cell type. While a convex com-
bination is the most straightforward, any function of the maximum and minimum such that
the result is strictly between the two is a valid method for determining the location of the
splitting surfaces (Figure 5). Thus, the location of splitting surfaces can be modified by
changing this function, either by using a different value of α , or by using a different function
altogether. Furthermore, the function used can be different for each cell type and spherical
coordinate.

A useful function for improving volume preservation is one that results in one of the
new ranges having a specific percentage of the volume of the original range. We start with
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Fig. 5 Each SDGO cell can be expressed as a range in each spherical coordinate, and the location of the
splitting surface for each spherical coordinate can be expressed as a function of the maximum and minimum
of the respective range. Here we show only an NG cell, however the same applies to SG and LG cells. The
functions f , g, and h serve as placeholders for any valid function that results in the output being strictly
between the two inputs

the radial splitting surface. Referring to Eq. (5), let p ∈ (0,1) be the percentage we wish for
the lower range to have, then

p
(
r3

2− r3
1
)
= r3

s − r3
1

pr3
2− pr3

1 = r3
s − r3

1

r3
s = pr3

2 + r3
1− pr3

1

r3
s = pr3

2 +(1− p)r3
1

rs =
3
√

pr3
2 +(1− p)r3

1. (10)

The derivations for the latitudinal and longitudinal splitting surfaces follow the same, with
results

φs = sin−1 (psinφ2 +(1− p)sinφ1) , and (11)

λs = pλ2 +(1− p)λ1. (12)

The question then becomes which splitting surfaces can be modified, and in which ways,
in order to improve the volume preservation of the grid. We first look at which splitting
surfaces should not be modified. From Eq. (12) it is clear a longitudinal splitting surface
at the midpoint will always split a cell exactly in half, and therefore since all longitudinal
splitting surfaces are symmetric, they should not be changed.

Less trivially, the radial splitting surface for SG cells should also be left at the midpoint.
Referring to Figure 6, we can see that the radial splitting surfaces for SG cells separate the
grid into spherical shells. Shell n has a volume proportional to

α
3n−α

3(n+1), (13)
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Shell 0

Shell 1

Shell 2

Shell 3

Fig. 6 Spherical shells created by the radial splitting surfaces of SG cells. At k levels of subdivision there are
k shells and one inner SG cell. These shells are similar and should have volume proportional to the number
of cells they contain

then the ratio of the volume between shell n+1 and n is

α3(n+1)−α3(n+2)

α3n−α3(n+1) =
α3α3n

(
1−α3

)
α3n (1−α3)

= α
3. (14)

From the self similar nature of SDOG subdivision, we know that the cells in shell n are
simply the cells of shell n+ 1 subdivided once. We also know that in the limit, an SDOG
grid at one level higher of subdivision will have eight times as many cells as the previous
resolution

(
limk→∞

T (k+1)
T (k) = 8

)
. Therefore, in order for cells in the grid to be close to equal

volume, it must be that shell n+ 1 has one eighth the volume of shell n (since it will have
one eighth the number of cells), which occurs exactly when α = 1

2 .
This leaves five possible splitting surfaces that can be modified: the radial splitting sur-

face for LG and NG cells, and the latitudinal splitting surface for SG, LG, and NG cells.
An important decision then is whether to use convex combinations to calculate the location
of these surfaces (Eq. (9)), or to use the functions parameterized by the ratio of volumes
(Eq. (10) and (11)). This is akin to a stationary subdivision scheme in comparison to a non-
stationary one. A stationary scheme will maintain the simplicity of subdivision, however,
offers less overall ability to improve volume preservation. Because of this, we provide both
a stationary and non-stationary set of modifications.

4.1 Stationary Subdivision

By constraining splitting surfaces to be calculated via convex combinations, there are more
restrictions on which splitting surfaces should be modified. An interesting property of SDOG
subdivision is that if a cell subdivides symmetrically in a given spherical dimension, all chil-
dren of that cell also subdivide symmetrically in that dimension. Thus, symmetric splitting
surfaces result in non-degenerate binary (in the given dimension) subdivision at all further
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Fig. 7 Spherical zones created by the latitudinal splitting surfaces of SG and LG cells. At k levels of subdivi-
sion there are k zones and one upper stack of LG cells in the outer most shell. Each successively smaller shell
has one fewer zones, until reaching the innermost SG cell. Zones in the same shell are not exactly similar, but
are regular and should have volume proportional to the number of cells they contain

levels of subdivision, and it becomes clear that using any other value than the midpoint re-
sults in divergence as the level of subdivision gets large. Therefore, all symmetric splitting
surfaces should be left at the midpoint, which leaves only the latitudinal splitting surface for
SG and LG cells to be modified. We use αSG

φ
and αLG

φ
to refer to the splitting factors used

for calculating the location of these surfaces.
We first performed a simple search on the possible values of these splitting factors to see

if it was possible to improve the volume preservation. We found that volume preservation
could be improved by certain values of αSG

φ
, however, it was always the case that αLG

φ
was

best left equal to one half. To understand why this is the case, we look at where the ideal
placements for these splitting surfaces would be if not constrained by convex combinations.
Notice that these two latitudinal splitting surfaces have a similar effect as the radial splitting
surface for SG cells. Referring now to Figure 7, we see that these splitting surfaces further
divide the spherical shells into spherical zones. Additionally, each zone is comprised entirely
of NG cells. From this fact we conclude that zone n has exactly four times as many cells
as zone n+1, and thus in the ideal case would have exactly four times the volume as well.
We can use Eq. (11) to find these ideal locations using the proper value for p. Zone n has a
percentage (1− p)n p of the initial volume of the octant, then setting the ratio between zone
n+1 and n to be equal to 1

4 gives us p = 3
4 , and finally

φs = sin−1
(

3
4

sinφ2 +
1
4

sinφ1

)
. (15)

From here, we can now see why the latitudinal splitting surfaces for LG cells should
remain at the midpoint. As φ1 approaches ± π

2 , this function is closely approximated by a
convex combination with a factor of one half (see Appendix A). Thus, as the level of subdi-
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Large Volume

Average Volume

Small Volume

Fig. 8 Results of the stationary scheme after four levels of subdivision using αSG
φ
≈ 0.54. Since only one

type of splitting surface has been modified, the results are similar to that of conventional SDOG

vision gets large, using αLG
φ

= 1
2 approaches the ideal placement for the splitting surfaces,

and thus is the ideal factor to use for a convex combination.
We can also use this formulation to find the theoretical ideal placement for the latitu-

dinal splitting surface of SG cells. SG cells always have a minimum latitude of zero and
a maximum of ± π

2 , thus Eq. (15) will always evaluate to plus or minus the same value.
Substituting back into Eq. (9) we get

α
SG
φ =

sin−1 (± 3
4

)
± π

2
≈ 0.53989. (16)

The grid resulting from using this value can be seen in Figure 8. Interestingly, our initial
search also found αSG

φ
= 0.57 to perform well, even resulting in a slightly lower maximum

difference in cell volumes than the theoretical ideal. These findings are not necessarily in
conflict, however, as the theoretical ideal results in much less variation in the volume of
cells. We compare these two schemes more closely in Section 6.

4.2 Non-Stationary Subdivision

By not limiting splitting surfaces to be calculated using convex combinations, we are al-
lowed much more control over subdivision and the resulting properties. Using Eq. (10) and
(11) to calculate the modifiable splitting surfaces, all that is needed is to determine the ideal
value of p for the different splitting surfaces and cell types. We have already done this for
the latitudinal splitting surfaces of SG and LG cells in Section 4.1 with Eq. (15). Therefore,
all that is left is the radial splitting surfaces for LG and NG cells, and the latitudinal one for
NG cells. However, since all of these remaining splitting surfaces are symmetric, we simply
require that the volume on each side of these splitting surfaces be equal. In other words, we
can simply set p = 1

2 for these remaining splitting surfaces.
Figure 9 shows the resulting grid from this method of calculating splitting surfaces. In

this grid, all NG cells at the same level of subdivision have exactly the same volume as one
another. This greatly improves the volume preservation, as only cells that extend to one of
the poles (SG and LG cells) will have a different volume than the other cells in the grid.
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Large Volume

Average Volume

Small Volume

Fig. 9 Results of the non-stationary scheme after four levels of subdivision using β = 1. All NG cells have
exactly the same volume, with the LG and SG cells having a lower volume. Notice how the resulting NG
cells are stretched and squashed in order to ensure they all have equal volume

Large Volume

Average Volume

Small Volume

Fig. 10 Results of the non-stationary scheme after four levels of subdivision using β = 1
2 . NG cells are still

stretched and squashed in order to better preserve volume, however the effect is less pronounced

This does not come without consequence though; cells are stretched and squashed in order
to achieve this volume preservation, which may be an undesirable effect depending on the
application. To offset this reduction in cell compactness, it is possible to use splitting factors
that are somewhere in between these ones (c′s), which give ideal volume preservation, and the
conventional SDOG ones (cm), which give better compactness. One simple way to calculate
this would be as a convex combination of the two

cs = βc′s +(1−β )cm, β ∈ (0,1) , (17)

however other methods could give better results. We show a simple result in Figure 10 using
β = 1

2 .
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5 Mapping Modified SDOG Grids

By modifying the splitting surfaces used for subdivision, any SDOG indexing operations
that depend on the location of cells in the grid will no longer function properly. Examples of
these operations include point to cell queries, which give the cell that contains a given point,
and index inversion, which calculates the location and geometry of a cell from its index. The
obvious solution is to simply redefine these operations on the new geometry, however, this
is not necessarily practical as it would have to be done individually for each modified grid.
Additionally, the more complex geometry of the modified grids may make these algorithms
more difficult to design and/or more computationally expensive to perform as compared to
the ones for conventional SDOG. A better solution is to find a mapping (and corresponding
inverse mapping) between a conventional SDOG grid and the grid resulting from the mod-
ified subdivision scheme. Given this mapping, all indexing operations can be done using
the standard algorithms, with inputs and outputs converted between the conventional SDOG
grid and the modified one accordingly.

For the stationary subdivision schemes this mapping is straightforward. Since only the
latitudinal splitting surface of SG cells is modified, latitudes in the range [0,± π

4 ) should be
mapped to the range [0,±αSG

φ

π

2 ) and likewise the range [± π

4 ,±
π

2 ] to the range [±αSG
φ

π

2 ,±
π

2 ].
This can be done with a simple linear map, and the inverse follows trivially.

For the non-stationary schemes this mapping is more complicated. We wish to define a
function M : (φ ,r)→ (φ ,r) that converts a latitude and radius in a conventional SDOG grid
to the corresponding latitude and radius in the modified grid (longitude does not need to be
mapped, as it is not changed between the two grids). The two coordinates act independently
of each other, so we can split this function into its two components, Mφ (φ) and Mr(r), and
derive each one and its inverse individually. This is done by parameterizing points inside an
NG cell using the function(s) used to calculate its splitting surfaces (Eq. (9) for conventional
SDOG and Eq. (10) and (11) for the modified grid). NG cells are used for this purpose as all
children cells are also NG, and therefore use the same formulations for calculating splitting
surfaces. By finding the boundaries of the coarsest NG cell that contains a given point, these
parameterizations can be used to go from one space to the other by finding a relationship
between them—in this case d = α = p—all of which can be done in constant time. The
final formulations are as follows, with the full derivation found in Appendix B. Let Rm be
the radius of the grid. Latitude forward:

Mφ (φ) = sin−1 (duv +(1−d)`v) , where

d =
2φ

π
− `c

uc− `c
,

uc = 1−
(

1
2

)⌈log0.5

(
1− 2φ

π

)⌉
, uv = 2uc−u2

c .

`c = 1−
(

1
2

)⌊log0.5

(
1− 2φ

π

)⌋
, and `v = 2`c− `2

c .

Radius forward:
Mr(r) = Rm

3
√

du3 +(1−d)`3, where

d =
r

Rm
− `

u− `
,
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u =

(
1
2

)blog0.5( r
Rm )c

, and

`=

(
1
2

)dlog0.5( r
Rm )e

.

Latitude inverse:
M−1

φ
(φ) =

π

2
(duc +(1−d)`c) , where

d =
sinφ − `v

uv− `v
,

uc = 1−
(

1
2

)dlog0.5(
√

1−sinφ)e
,

`c = 1−
(

1
2

)blog0.5(
√

1−sinφ)c
,

and both uv and `v follow the same as the forward. Radius inverse:

M−1
r (r) = Rm (du+(1−d)`) , where

d =

(
r

Rm

)3
− `3

u3− `3

and both u and ` follow the same as the forward.
In the case where a division by zero occurs, (i.e. when u= ` or uc = `c), the result of said

division is treated as zero. The latitude mappings assume φ ≥ 0, however, from symmetry a
negative value of φ can easily be accommodated by using the absolute value and negating
the final result. This mapping is applicable to the first non-stationary scheme discussed in
Section 4.2; schemes derived from Eq. (17) cannot be mapped, as this formulation cannot
easily be expressed in terms of a parameter. In the future, other blending methods may be
explored that allow for a similar mapping to be derived.

6 Results and Evaluation

There are several potential methods for evaluating the volume preserving properties of a
3D DGGS. When first proposed in [28], the ratio between cells of largest and smallest
volume was used to evaluate volume preserving properties of SDOG. This volume ratio is
a useful measure for determining the worst-case difference in the volume of cells, however
it does not give any information about the distribution of said volumes. For example, a grid
with all cells except one having equal volume, and a grid where every cell has a distinct
volume, could end up having the same volume ratio. To get a more complete understanding
of volume preservation, we should also examine statistics that give a measure of distribution.
For this purpose, we use the coefficient of variation (CV), which is simply the ratio between
the standard deviation and the mean. We use the CV over the standard deviation as it a
dimensionless quantity.

In modifying the subdivision for volume preservation, it is also important to evaluate
the impact these changes have on other properties of the grid. In Section 5 we discussed
how the modified grids can be indexed using a mapping between them and conventional
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Fig. 11 Volume ratio for the different grids at increasing levels of subdivision. Note that for the non-stationary
method (β = 1) the volume ratio does not change with subdivision level

SDOG, however we should also measure the effect our changes have on the compactness of
the resulting cells. To measure this, we use the notion of sphericity, which quantifies how
closely the shape of an object approximates a sphere [23]. It is defined as the ratio between
the surface area of a sphere with the same volume as the object and the surface area of the
object itself. Therefore, a perfect sphere will have a sphericity of one, and any other object
will have sphericity strictly less than one. Formally, given an object ω and a sphere s such
that vol(s) = vol(ω), the sphericity of ω , Ψ , is given by area(s)

area(ω) , or equivalently

Ψ =
π

1
3 (6vol(ω))

2
3

area(ω)
. (18)

We use the mean and standard deviation (SD) of sphericity for all cells in the grid to evaluate
compactness globally.

As a baseline, we have calculated the value of these measures at each subdivision level
from one to fifteen for conventional SDOG. We then repeated this for the four modifications
discussed in this paper: the two stationary modifications with αSG

φ
≈ 0.54 and αSG

φ
= 0.57,

the non-stationary modification (referred to as β = 1), and finally the blending of the non-
stationary with conventional SDOG using β = 1

2 . The results for each grid are displayed in
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Fig. 12 CV of volume for the different grids at increasing levels of subdivision

Table 1 Convergence value of each measure for the five discussed grids

SDOG αSG
φ
≈ 0.54 αSG

φ
= 0.57 β = 1 β = 0.5

Volume Ratio 8.88 8.17 8.15 2.63 4.37
CV of Volume 0.412 0.399 0.409 6.44E-19 0.211

Mean Sphericity 0.799 0.797 0.795 0.767 0.787
SD of Sphericity 0.00639 0.00629 0.00727 0.0271 0.0141

Figures 11, 12, 13, and 14 showing the volume ratio, CV of volume, mean sphericity, and
SD of sphericity respectively. Table 1 summarizes these charts with the convergence value of
each property for the five different grids. We also give convergence values for the maximum
and minimum sphericity—and their difference—for each grid in Table 2. It is important to
note that for volume ratio and CV of volume lower values are better, but for mean sphericity
a higher value is better.

The stationary scheme with αSG
φ
≈ 0.54 has a better volume ratio than conventional

SDOG for all levels of subdivision except the first, and a lower CV of volume for all levels
of subdivision after the second. Comparing this to the one with αSG

φ
= 0.57, both the volume

ratio and CV of volume do not improve as compared to conventional SDOG until the fifth
level of subdivision. Both of these methods also reduce the mean sphericity of cells at all



Toward Volume Preserving Spheroid Degenerated-Octree Grid 19

0.76

0.765

0.77

0.775

0.78

0.785

0.79

0.795

0.8

0.805

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
ea

n
 S

p
h
er

ic
it

y

Level of Subdivision

SDOG � = 0.54 � = 0.57 β = 1 β = 0.5

0.785

0.79

0.795

0.8

0.805

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
ea

n
 S

p
h
er

ic
it

y

Level of Subdivision

SDOG α = 0.54 α = 0.57 β = 1 β = 0.5

Fig. 13 Mean sphericity for the different grids at increasing levels of subdivision

Table 2 Convergence value of max and min sphericity for the five discussed grids

SDOG αSG
φ
≈ 0.54 αSG

φ
= 0.57 β = 1 β = 0.5

Max sphericity 0.806 0.806 0.806 0.806 0.806
Min sphericity 0.754 0.763 0.766 0.672 0.728

Difference 0.0520 0.0428 0.0404 0.134 0.0780

levels of subdivision, with αSG
φ

= 0.57 having more than twice the absolute reduction of
αSG

φ
≈ 0.54. The variation in sphericity is similar between all three of these grids. Using

αSG
φ

= 0.57 does give a slightly better volume ratio than αSG
φ
≈ 0.54 as the level of subdi-

vision gets large, however this difference is quite small and likely not worth the lower cell
compactness and higher variation in volume.

The non-stationary scheme gives a much larger improvement to both the volume ratio
and the CV of volume. This is to be expected, as all NG cells in this scheme have exactly
equal volume. As the level of subdivision gets large, the CV of volume quickly approaches
zero since the number of NG cells is much larger than the number of LG and SG cells in
the grid. The cost of this improved volume preservation is a much larger reduction in the
sphericity of cells and an increase in the variation of sphericity, which is to be expected. The
blending scheme has results in between that of conventional SDOG and the non-stationary
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Fig. 14 Standard deviation of sphericity for the different grids at increasing levels of subdivision

scheme, which was also expected. The CV of volume, mean sphericity, and SD of sphericity
are all near the respective halfway points, whereas the volume ratio still ends up being a
significant improvement over conventional SDOG.

7 Conclusion and Future Work

In this work we have presented several methods for modifying the subdivision of SDOG to
improve the volume preservation properties of the resulting grid. The modifications provide
improved volume preservation as measured by two different metrics, at the cost of reduced
compactness of cells for higher levels of volume preservation. We have also provided a
closed form forward and inverse mapping between conventional SDOG and our modified
grids. This mapping allows all indexing operations to be done efficiently with the standard
algorithms for SDOG by mapping inputs and outputs between the two grids.

A simple extension of this work could explore a method to set the value of β directly
based on some constraints for the desired volume preservation and/or compactness of cells.
This could be accomplished with a simple optimization, however there may exist a more di-
rect approach that could be useful. Other blending functions should also be explored, as the
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current formulation does not allow for the mapping method to be used to index the result-
ing grid. It may also be possible that other blending methods will result in a better balance
between volume preservation and cell compactness, however, how to find such a function
is not clear at this time. Moreover, we have not explored any ways to directly improve the
compactness of SDOG cells. Based on our experimentation it seems that any deviations
from the conventional splitting surfaces will result in reduced sphericity, however a rigor-
ous justification to support this claim would require further research. Different measures of
compactness may also give different results, which would further complicate matters.

There are several other interesting avenues for potential future work as well. The meth-
ods presented are all adjustments to SDOG that do not change the underlying structure of
the grid. By making more radical changes, it may be possible to further improve the vol-
ume preservation and other properties of the grid. Such changes could include modifying
the number and types of cells produced by subdivision and adding new classes of cell types
to the grid. Additionally, as far as we are aware, all applications of SDOG thus far [26–28]
have used a sphere to approximate the Earth. As the sphere and ellipsoid share coordinate
systems, SDOG could be easily extended to operate on a spheroid. The exact consequences
this would have on the volume preservation and other properties of the grid is not clear at
this time.

It is also possible to create a 3D DGGS that is not based on latitude and longitude
coordinates. In fact, many traditional DGGS use polyhedral approximations of the sphere as
their reference models [15]. This allows for a more uniform approximation of the sphere and
prevents issues with degeneracies and oddly shaped cells being present near the poles. By
using a similar approach to create a 3D DGGS, it may be possible to achieve better volume
preservation and compactness as compared to methods that are based only on latitude and
longitude coordinates.

A Approximate Form for Ideal Latitudinal Splitting Surfaces

Considering first the case of LG cells north of the equator where φ2 is always π

2 . By Eq. (15), the ideal
location of latitudinal splitting surfaces for these LG cells is given by

φs = sin−1
(

3
4
+

1
4

sinφ1

)
.

We wish to analyze the behavior as φ1 approaches π

2 , so we re-parameterize in terms of ∆φ = π

2 −φ1 to get

φs = sin−1
(

3
4
+

1
4

sin
(

π

2
−∆φ

))
= sin−1

(
3
4
+

1
4

cos∆φ

)
.

Truncating the Taylor expansion of φs, approaching zero from the right, to a second-order approximation
gives

π

2
− 1

2
∆φ +0 ·∆φ

2,

and substituting back in for φ1 we get

π

2
− 1

2

(
π

2
−φ1

)
=

π

4
+

1
2

φ1,

which is equivalent to a convex combination with a splitting factor of one half. The derivation follows the
same for LG cells where φ2 =− π

2 , except we do the Taylor series expansion approaching from the left.
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B Derivation of Mappings for Non-Stationary Subdivision

Recall our goal of defining a function M : (φ ,r)→ (φ ,r) that converts a latitude and radius in a conventional
SDOG grid to the corresponding latitude and radius in the modified grid. Comparing the convex combina-
tions used in conventional SDOG (Eq. (9)) to the volume preserving functions used for our non-stationary
modification (Eq. 10 and 11), we notice that these equations all parameterize the range of an SDOG cell
in the given spherical coordinate from zero to one. Therefore, a point (λ ,φ ,r) inside an SDOG cell can be
parametrized in terms of the maximum and minimum of that cell in each spherical coordinate, which we find
by solving these equations for α and p. For conventional SDOG we get

α =
c− c1

c2− c1
,

and for the modified grid we get

pr =
r3− r3

1

r3
2− r3

1
and

pφ =
sinφ − sinφ1

sinφ2− sinφ1

for radius and latitude respectively. Furthermore, if a point is inside a cell where all its children use the same
formulations for splitting surfaces as the cell itself (i.e. NG cells), then this parametrization will be consistent
with the ones given by the children, and therefore be consistent at all levels of subdivision.

To create this parameterization then, we need to find the boundaries of the coarsest NG cell that contains
the given point. Referring back to Figures 6 and 7, this is equivalent to finding the boundaries of the spherical
shells and zones that contain the point. We use u and ` to refer to the maximum and minimum of these
boundaries respectively, expressed in the parameter domain. For the spherical shell these values are the same
in both the conventional and modified grids, since they both use the same radial splitting surface for SG cells.
For the spherical zone, however, these values will differ between the two grids due to the different latitudinal
splitting surfaces used for SG and LG cells. Thus, we distinguish between these values in the conventional
and modified grids by using subscripts c and v respectively.

We can now begin to derive the mappings. Since NG cells use α = 1
2 in conventional SDOG and p = 1

2
in the modified grid, we can directly equate these two parameterizations. We use d as the common parameter
and get

Mr(r) = Rm
3
√

du3 +(1−d)`3,

d =
r

Rm
− `

u− `
,

and
Mφ (φ) = sin−1 (duv +(1−d)`v) ,

d =
2φ

π
− `c

uc− `c
.

All that is left is to find values of u and `; we start with the radius case. We first normalize the radius to the
range of the grid ( r

Rm
). Since SG cells use a radial splitting factor of one half, we know u and ` will be an

integer power of one half. To find these exponents, we first find the exponent x that gives exactly r
Rm

:(
1
2

)x

=
r

Rm
,

x = log0.5

(
r

Rm

)
.

By taking the floor and ceiling of x, we can find the closest powers of one half to our target r
Rm

. The smaller
exponent (floor) will give the larger final value and vice versa. Therefore, we conclude with

u =

(
1
2

)⌊log0.5( r
Rm )

⌋
and

`=

(
1
2

)⌈log0.5( r
Rm )

⌉
.
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The latitude case for the forward mapping follows similarly, the main difference being that SG and
LG latitudinal splitting surfaces are located at one minus integer powers of one half, instead of the powers
themselves. Again, we normalize the latitude ( 2φ

π
) and solve for x:

1−
(

1
2

)x

=
2φ

π
,

x = log0.5

(
1− 2φ

π

)
.

The smaller exponent (floor) now results in the smaller value and vice versa. Therefore, we conclude with

uc = 1−
(

1
2

)⌈log0.5

(
1− 2φ

π

)⌉
, and

`c = 1−
(

1
2

)⌊log0.5

(
1− 2φ

π

)⌋
.

We now need to find the equivalent values uc and `c in the modified grid. We already know that for the
conventional grid, these surfaces are located at one minus integer powers of one half. For the modified grid,
this is instead one minus integer powers of one quarter (refer to Eq. (11)). Thus,

α(x) = 1−
(

1
2

)x

and p(x) = 1−
(

1
4

)x

.

Rearranging and solving we get
x = log0.5 (1−a(x)) ,

p(x) = 1−
(

1
4

)log0.5(1−a(x))

= 1− (1−a(x))log0.5( 1
4 )

= 1− (1−a(x))2

= 2a(x)−a(x)2, and (19)

a(x) = 1±
√

1− p(x). (20)

We can now say
uv = 2uc−u2

c and `v = 2`c− `2
c ,

and the forward mapping is complete.
The inverse mapping follows similarly to the forward one. For radius we now have

M−1
r (r) = Rm (du+(1−d)`) , where

d =

(
r

Rm

)3
− `3

u3− `3

with u and l the same as the forward. For latitude we have

M−1
φ

(φ) =
π

2
(duc +(1−d)`c) , where

d =
sinφ − `v

uv− `v
.

We still have uv and `v defined the same as the forward, however uc and `c are now calculated differently. We
use Eq. (20) to map φ to the appropriate parameter space, where p(x) = sinφ . Solving again for x:

1−
(

1
2

)x

= 1−
√

1− sinφ ,
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x = log0.5

(√
1− sinφ

)
.

The values of uc and `c then follow directly, giving

uc = 1−
(

1
2

)dlog0.5(
√

1−sinφ)e
and

`c = 1−
(

1
2

)blog0.5(
√

1−sinφ)c
.
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