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Abstract. A progressive curve representation based on reverse subdi-
vision is introduced. Multiresolution structures for common subdivision
rules that have both banded reconstruction and decomposition filters are
produced. Multiresolution filters are usually applied to the whole curve
uniformly, while progressive curves are based on collapse and split op-
erations that can be applied locally on any portion of a curve. In this
work, firstly, small width multiresolution filters are constructed based
on the reverse of the cubic B-spline subdivision. The collapse and split
operations are replaced by a local decomposition and reconstruction pro-
cess. Second, an efficient algorithm and data structures are presented to
allow for the resulting progressive curve. Third, both a user-controlled
and an automatic method to select a portion of the curve for recon-
struction or decomposition are described. The technique introduced has
various applications such as view-dependent rendering, flexible editing
and progressive transmission.

1 Introduction

Curves are in many applications in CAD/CAM and computer graphics. Curves
can be found as the basis for high quality font design, artistic sketches, data
plots, 3D modeling and animation to manipulate object design and motion [14].
As described in [6], any flexible curve representation should allow for effective
tools that include editing, smoothing and scan conversion. In this research, the
problem of applying the operations listed below, on a segment of a curve are
addressed. These operations have applications in such tools. The operations are:

– Simplifying a segment of a curve (smoothing): scanned data can often
be replaced by simpler representations with less points. Current methods al-
low the user to reconstruct and decompose the whole curve [7, 6]. No method
exists to apply reverse subdivision on a curve locally. Two approaches would
be useful, a user-controlled method and an automated approach for segment
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simplification. Possible applications include flexible editing, wherein, the user
can lower the resolution of a curve to allow for easier editing, since there are
fewer points to manipulate. To view the final result, a finer sequence of points
can then be generated, for the curve segment (Figure 3).

– View dependent rendering: sometimes it is desirable to refine a region
of a curve selectively. For view-dependent rendering, a segment of a curve
can be shown close-up, as a finer set of points, while the remainder of the
curve can be kept at a lower resolution (Figure 4).

– Progressive Transmission: when a curve is transmitted over a network,
a low resolution curve segment followed by correction information are incre-
mentally sent to get the higher resolution portion.

A multiresolution representation provides a uniform framework that addresses all
these problems, if applied to the whole curve. It is useful to be able to manipulate
the complete curve. An alternative approach is a progressive curve representation
that is based on edge collapse and vertex split operations. This approach can be
applied locally to change and enhance a portion of a curve. However, it is not
based on subdivision curves, that are very important in computer graphics.

In this work, we introduce a new framework that replaces vertex-split and
collapse operations based on reverse subdivision with reconstruction and de-
composition operations. To achieve this, local filters are used and applied non-
uniformly to curves, to do reverse subdivision. This has the advantage that the
resulting curve can be created with high and low resolution segments simulta-
neously. In this work, local clusters with many points are replaced by clusters
with fewer points, approximated using least-squares, that are a geometric good
fit to the original group of points.

Section 2 describes previous work. Section 3 outlines details of how decompo-
sition and reconstruction matrices are derived. Section 4 demonstrates applica-
tions of this work. Section 5 illustrates the data structure and algorithms used.
Section 6 shows results. Section 7 summarizes the main concepts of this research
and proposes some possible future work.

2 Previous Work

In this section, some relevant background work will be described, which includes
subdivision, reverse subdivision and progressive curves.

2.1 Subdivision Curves

Subdivision curves start with a set of coarse points ck and generate a larger
set of points ck+1, using a subdivision matrix P . This process is repeated a
finite number of times to produce the finer points. By successive application of
subdivision, a hierarchy of curves can be obtained, which converge to a smooth
curve. Subdivision can be stated by:

Pck = ck+1 (1)
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Chaikin [3], Faber[4], Cubic B-Spline[16], Dyn-Levin-Gregory curves [5] are all
example of subdivision curve schemes. The first three subdivisions are spline-
based and are all examples of uniform knot insertion. For these curve schemes,
subdivision reversal can be studied as uniform knot removal. There is other
interesting work related to general knot removal [11].

An example of cubic B-spline subdivision scheme will be described. Given an
initial control polygon ck. A new refined control polygon ck+1 is created with
new points on the edges of the given polygon and with the given polygon vertex
points in adjusted positions. The new points on the edge of the original control
polygon are called ck+1
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The limit curve of this subdivision is C2 and it will be exactly the cubic
uniform B-Spline curve defined by the initial control polygon[17]. This is one of
the most important curve schemes. The work in this research builds on the cubic
B-Spline subdivision scheme. Nevertheless, the approach may be built on other
subdivision schemes in a similar way.

2.2 Multiresolution Curves

Multiresolution (MR) is a representation which allows the user to change a high
resolution to a lower one, in such a way that the original data can be recon-
structed correctly. MR can be considered as a generalization of subdivision. A
conventional approach to obtain an MR representation is based on wavelets [15].
Another approach to construct MR is using reverse subdivision [9, 2, 1]. which
converts a high resolution approximation to a lower one, while simultaneously
storing approximation-error (detail) information in a space-efficient manner. The
high resolution approximation is recoverable by subdividing the lower resolution
approximation and adding detail information. Both their operations are simple
and fast. Figure 1, shows an MR structure. It shows an outline of an owl. The
left-most image is a given fine set of points, while the middle and right-most im-
ages are successively coarser approximations. The user can easily switch between
the fine and coarse images when there is an MR representation.
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Fig. 1. Subdivision and reverse subdivision

To create MR structures, four matrices A, B,P and Q must be found, whose
rows provide filters for decomposition and reconstruction. Assume that the
points for a curve are given. Denote them by ck+1 (n points). They will be
referred to as the fine data. It may be of interest to find an approximate set of
m coarse points ck (where m < n). By applying A, ck is obtained:

ck = Ack+1 (2)

A is an m × n matrix. In order to have an accurate reconstruction of ck+1,
the error terms of the approximation must be stored completely, as details. The
details (dk) are captured as:

dk = Bck+1 (3)

A and B provide the decomposition filters. Decomposition is the process of
splitting fine data into a low resolution part and details. The original data can
be recovered using two matrices P and Q, providing the reconstruction filters.
The reconstruction phase is as follows:

Pck + Qdk = ck+1 (4)

2.3 Progressive Curves

A progressive mesh [7] is an approach for constructing levels of details of meshes.
It can also be used for curves. It is based on edge-collapse and vertex-split
operations. An initial fine sequence of points can be simplified into coarse points
by applying a sequence of edge-collapse operations. The inverse of a collapse is
the vertex-split, which reproduces the fine mesh from a coarse one. An important
issue that distinguishes the work presented in this work from a simple edge
collapse operation is that a number of points are replaced by a new point, which
is a least-square approximation. Simple edge collapse chooses a new point that
is just conveniently chosen on the collapsed edge.

Progressive curves have many similarities to multiresolution curves since both
of then store simpler structures and details. Both approaches allow the user to
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change between coarse and fine representations. A detailed discussion of the dif-
ference between both, in relation to global MR can be found in [7]. The frame-
work presented in this research, is a combination of MR and the progressive
structure. Like progressive structures, the user can apply the decomposition and
reconstruction operation on any portion of the curve. However, the decomposi-
tion and reconstruction operations in this work are based on subdivision and its
reverse rather than vertex split and collapse. As a result, a non-uniform distri-
bution of points can easily be obtained, if needed, as shown in figure 2(b) all
MR points are obtained by local approximation based upon least squares in a
local area. By contrast, conventional MR filters must be applied uniformly on
all the data points.

3 Progressive Structures Based on Multiresolution

In this research, a decomposition and reconstruction approach has been applied
using MR filters to a portion of a curve. We have selected a MR method con-
sistent with the cubic B-spline subdivision [2] for this paper, but the approach
can be used for other subdivisions. In this case, the minimum non-trivial length
of curve portions to collapse is five for this work, but the approach can be used
for other subdivisions. A sequence of five points (ck+1) from the fine points are
changed to three coarse points (ck), during decomposition:

ck+1 = [ck+1
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4 ]

ck = [ck
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1, ck
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0

must be equal to ck+1

0
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2
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4
. ck+1

1
, ck+1

2
and ck+1

3
must be collapsed to a new point

ck
1

located in a best least squares position determined from ck+1 points. This
conversion means that two points are removed for any one of the curve segments.
The procedure may be repeated for each curve part, as needed. To allow for full
reconstruction, it is necessary to keep some additional information, as details.
In this case, two details, dk

0
and dk

1
must be stored:

dk = [dk

0 , dk

1 ] (5)

For this scheme, the four matrices A, B, P and Q, described in section 2.2,
need to be found. In order to construct these partial and local filters for the
specific portion of the data, we use and manipulate the general technique that
appeared in [2]. P is chosen as a small subdivision matrix for cubic B-spline
that converts three coarse points to five fine points. This first row and last
row of P have been selected as the identity rows to keep the first and the last
points unchanged (ck

0
and ck

3
). The other rows come from standard subdivision

matrices.
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Consequently, P is known and other matrices A, B and Q must be con-
structed consistent with P . In order to guarantee the full reconstruction of fine
data from coarse data and details, the matrices must satisfy the bi-orthogonality
condition [15] which is:

[
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B

]

[

P Q
]

=

[

I 0
0 I

]

In addition, it is preferred that the A matrix in Equation 2 produces ck as a
minimizer of the problem:

min
ck

||ck+1 − Pck|| (6)

This guarantees that the details stored are small values. All these conditions
are transformed to linear equations [2] and the solutions provide the matrices
as:
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These matrices together with equations (2), (3) and (4) form a local MR
representation that can be used for the decomposition and the reconstruction
operations on the points and detail information of ck+1, ck and equation (5).

4 Applications

The given progressive structure that is based on multiresolution has several ap-
plications such as scan conversion, flexible editing, view dependent rendering and
curve compression. There are other techniques available for these applications,
however our technique has the flexibility of the progressive structure, as well as
consistency with multiresolution and subdivision methods (Figure 2(c,d)). This
flexibility is due to decomposition and reconstruction operations that are based
upon least squares (Equation 6). It is possible to choose any set of five succes-
sive points to collapse, consequently, the resulting coarse curve doesn’t necessary
have a uniform distributed set of points (Figure 2 (f)), however the details are
meaningful (as can be seem by comparing Figure 2(c) to 2(d)), since they come
from multiresolution filters. An important advantage over simple collapse/split
progressive curves is that there is the possibility of using the subdivision scheme
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Fig. 2. (a) An eagle created with 3156 points. (b) A decomposed eagle. (c) Image (b)
reconstructed using details. (d) Image (b) reconstructed by subdivision alone without
details. (e) Image (a) after removing points using the metric described in section 4.2.
The total number of points are 50. (f) Image (a) with 50 points, generated using the
simple remove one and keep one algorithm. (g) A portion of image (a) is decomposed.
(h) This image consists of three different segments, a high resolution part, a lower
resolution part and a portion that was decomposed and reconstructed without details
( the area selected by the window)

to partially enhance the curve (Figure 2(d)), because the local multiresolution
filters are constructed from the reverse subdivision.

A crude, simple approach to choose points to decompose, would be to select
them at random. However, using a more sophisticated approach will more likely
guarantee that the resulting curve represents the initial scanned points. Another
useful consideration is to provide a user-controlled method as well as an auto-
mated approach. The two methods used in this work, to eliminate redundant
points in scanned data, include the window selection and metric approach.

4.1 Decomposing a Curve Segment Using Window Selection

This method allows the user to control which portion of a curve is decomposed.
All points in this part of the curve are divided sequentially to groups of five
points. Then the decomposition operation is applied to them. This process is
repeated until a certain number of points desired, is reached. An example is
shown in figure 3. This diagram illustrates an application to edit Arabic fonts.
The user moves a window over the portion of the letter that is to be edited.
This segment has lots of control points, which make it tedious to select a specific
point. The points in the selected region are then decomposed. The user can then
manipulate the control points and elongate the letter. The edited segment of the
font is then reconstructed to finer points, to visualize the final resulting letters.
That is, ck+1 are decomposed to ck and dk. The ck points are edited to produce
altered points ek, a new version of the fine curve is produced as Pek + Qdk.
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Fig. 3. (a) Arabic font created with 3095 points. (b)The user selects a portion of
the font. The number of points in the selected region are reduced. (c) The letter is
modified in the area with reduced points. (d) The decomposed segment of the curve is
reconstructed.

4.2 Metric Ordering

This is an automated approach, to reduce points that represent a segment of a
curve, using a metric. Examples of possible metrics can be found in [8, 7]. The
metric used in this research is based on curvature. Areas of lower curvature are
decomposed and higher energy portions are preserved. The curvature is calcu-
lated by finding the distances and angle between a point and it’s neighbors. The
metric values mc1 calculated for point c1 can be written as:

mc1 = wθ|θ| + we(e0 + e1) (7)

e0 and e1 are the Euclidean distances between points c1 and it’s neighbors c0

and c2. The weights wθ and wd allow the user to tweak the metric as desired, to
give either distance or angle criteria, more importance. All weights wθ and wd,
used in this research were set to 0.5.

Figure 2(e) shows results using the metric. The original eagle is made up of
3156 points. Using the metric, segments of the curve are repeatedly decomposed
until 50 points remain. For comparison purposes, a simple scheme is used to
reduce the original eagle to 50 points (Figure 2(f)). This simple scheme keeps
one point and removes the following point. Again the process is repeated until
50 points remain. As can be seem from the figure, using the metric in equation 7
means that fine details such as the sharp hump on the eagle’s back, beak details,
the bottom of the wing parts, are all preserved. All these details are lost using
the simple scheme (Figure 2(f)).

5 Algorithms and Data Structures

In this section the algorithms and data structures that are used in the progressive
curve are outlined. To implement the window selection case in section 4.1,
it is possible to use a simple data structure, such as an array. However, the
data structure used, has been designed to work with the metric ordering in
section 4.2. The essential demand of data management, aside from correctly
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associating dk with ck information, is to keep track of the location and order
at which decompositions take place so that reconstructions can take place in
strictly reverse order to decompositions. The main data structure used, consists
of a linked-list of elements (Element List). Each element consists of the following
components:

– Position[3]: an array representing the x,y and z co-ordinates of a point.
– Details: a data structure that stores details, for the correct reconstruction.
– Metric Value: a double that is calculated from equation 7.

Details are stored as a ternary tree structure. For the three decomposed
elements, two details must be stored, as described in Section 3 and a hierarchy
of all the details is stored. This allows any of the curves, in any level of the
hierarchy to be regenerated correctly. The data structure for the details is given
by:

– d0 and d1: two doubles representing first and second details
– dleft, dmiddle and dright : three pointers, one to a new left detail, middle

detail and a right detail structure.

dleft, dmiddle and dright store details for the fine points, ck+1

1
, ck+1

2
, ck+1

3
.

Two more data structures are needed:

1. A pointer to the Element List: this list is sorted based on the metric
defined in section 3. It is needed for the decomposition stage. The first
pointer in this list, points to an element that should be decomposed with its
left and right neighbors. During the decomposition stage, these three points
are removed. The pointer list is then updated locally by inserting a new point
at the suitable location. This process is repeated, until a certain percentage
of points is deleted.

2. A stack of indices of the coarse elements: as each element is removed,
the index of the new coarse element is stored in a stack. This is needed to
reconstruct a curve correctly. As described in section 4.2, the decomposition
stage selects points based on a metric. Any five points can be chosen to be
decomposed to three coarse points. During the reconstruction phase, it is
crucial that the same three points be used, in order to return to the original
five points, this is guaranteed with the stack structure.

6 Results

To demonstrate the progressive curve, several examples are shown. For Figure
1, the structure has been reverse subdivided globally as in [2]. The left diagram
is a fine mesh and the coarse representation is shown in the middle and a coarser
representation is shown in the right-most figure. Figure 2 (b) shows the eagle
outline. The figure shows fine set of points, coarse points, a reconstructed curve
using details (Pck+Qdk) and without details (Pck alone). The figure also shows
a representation created with 50 points, generated by using the metric described
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in section 4.2 and by using the simple keep one and remove one approach for
comparison (Figure 2 (e) and (f)). As described in section 4, results in 2 (e) are
superior to results in 2 (f). Lastly the use of the window as a selection medium is
shown. Figure 2(h) shows a curve created with three different segments. Figure
3 illustrates flexible editing, using the window selection feature. Figure 4 show
the stages to view-dependent rendering. Lastly, an example of scanned data is
shown in Figure 5.

Fig. 4. View dependent rendering. (a) The lotus flower with a fine set of points. (b)
The flower was decomposed and an area selected, using a window was reconstructed.
(c) A close-up of the curve component selected by the window in (b)

Fig. 5. High and lower resolution of scanned data

7 Conclusions

This work combines both multiresolution and progressive structures together. A
multiresolution system has been constructed using the cubic B-spline subdivision
approach. The decomposition and reconstruction operations are derived from the
multiresolution filters. The efficiency of the method is presented. Although, this
work is based on the cubic B-spline subdivision, The approach can be applied
to any other curve subdivision scheme such as Chaikin and Dyn-Levin-Gregory.
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Generalization of this work to surfaces can be considered as a possible direction
of future work.
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