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Abstract

In this paper, a new adaptive method for Catmull-Clark sub-
division is introduced. Adaptive subdivision refines specific
areas of a model according to user or application needs.
Naive adaptive subdivision algorithm change the connec-
tivity of the mesh, causing geometrical inconsistencies that
alter the limit surface. Our method expands the specified
region of the mesh such that when it is adaptively subdi-
vided, it produces a smooth surface whose selected area is
identical to when the entire mesh is refined. This technique
also produces a surface with an increasing level of detail
from coarse to fine areas of the surface. We compare our
adaptive subdivision with other schemes and present some
example applications.

1. Introduction

Subdivision surfaces have become a commonly used tool
in modeling and animation packages. Subdivision is de-
fined by simple operations that are globally applied to a
given control mesh. Repeated applications of these oper-
ations produce a sequence of meshes that converge to a
smooth limit surface. Using special subdivision rules, it is
possible to create piecewise smooth surfaces. Subdivision
surfaces have a clear advantage over NURBS and Bézier
tensor product patches, that are traditionally used in com-
puter modeling and animation applications, because subdi-
vision operators can be applied to arbitrary topology two-
manifold meshes. In addition, subdivision surfaces do not
have the continuity limitations that tensor product patches
have when connecting multiple patches to produce piece-
wise smooth surfaces [5].

In many cases, subdivision of the entire input mesh is
not necessary nor desired. Recursive subdivision exponen-
tially increases the number of faces of the mesh, and leads
to heavy computational load at higher levels of subdivi-
sion. Generally high curvature areas require more subdi-
visions than planar regions in order to obtain a smooth sur-
face. In modeling applications designers may require a de-
tailed view of a portion of the model that they are working
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Figure 1. Global and incremental subdivisions

on. Adding features to a mesh requires an increase in the
level of detail where the feature is being added. In such
cases, adaptive subdivision produces a surface with lesser
face count by subdividing only some areas of the mesh.

Naive adaptive subdivision introduces connectivity in-
consistencies that must be addressed for correct rendering,
editing and further processing of the mesh. Because the
shape of the limit surface depends on the connectivity and
the geometry of the vertices, care must be taken to avoid
any side-effects to the subdivision scheme. Repeated adap-
tive subdivision may lead to a large difference in the level
of subdivision of adjacent faces. It is desirable that the vari-
ation in subdivision depth between adjacent faces are lim-
ited [12].

Later we will describe how current algorithms deal with
the issues that arise when some faces of a mesh are sub-
divided, including their disadvantages. Our contribution in
this paper is a new adaptive subdivision scheme that is de-
signed to address the limitations of these algorithms within
the constrains that we have established to obtain both an
efficient algorithm and a visually pleasing surface. Incre-
mental subdivision, our method, produces meshes with con-
sistent connectivity and geometry. An incrementally sub-



divided region of a mesh resembles the same area of the
surface produced by globally subdividing the mesh. Incre-
mental subdivision limits the subdivision depth of adjacent
faces, so the surface gradually varies from coarse to fine. An
example of a globally and incrementally subdivided model
is shown in Figure 1.

The local nature of subdivision operations naturally
lends itself to a data structure that allows efficient and intu-
itive local modifications to the mesh. Such a data structure
allows the subdivision operation to be performed entirely
within the graph space of the mesh. One of the goals in de-
signing incremental subdivision was to avoid methods that
would require additional book-keeping, including methods
that require off-line pre-computation and storage of the sub-
division levels.

We introduced incremental Loop subdivision in an ear-
lier paper [9]. Loop subdivision is an approximating
scheme that operates on triangular meshes [7]. The incre-
mental Loop subdivision is very efficient as well as easy
to implement. However, it is limited to triangular meshes.
Our contribution in this paper is the extension of incre-
mental subdivision to arbitrary faces. We have focused on
Catmull-Clark subdivision [4], which can be applied to gen-
eral topology meshes with arbitrary faces. It has a simple
face-splitting refinement algorithm, produces a surface that
approximates the control mesh, and is C

2 almost every-
where.

In section 2 we give an overview of the Catmull-Clark
subdivision. Existing adaptive subdivision schemes are
covered in section 3. Incremental subdivision is covered in
detail in section 4. Results and applications of incremental
subdivision are presented in section 5.

2. Catmull-Clark Subdivision

In Catmull-Clark subdivision, mesh M i is subdivided to
produce the mesh M i+1 by splitting each face of the mesh
to m quadrilaterals, where m is the number of vertices of
the face, and repositioning the vertices of M i. As illus-
trated in Figure 2, three kinds of vertices are created for
each face split. Face-vertex f i+1

j is the centroid of the face
that includes vertices vi, vi

j , and vi
j+1. Edge-vertex ei+1

j is
computed as
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Figure 2. Catmull-Clark subdivision. The • denotes
existing vertex, � denotes face-vertex, ◦ denotes
edge-vertex, and � denotes vertex-vertex.

An example of Catmull-Clark subdivision is given in
Figure 3. To produce piecewise smooth surfaces, a con-
nected series of edges are tagged as sharp and subdivided
so that the surface is tangent continuous along these edges,
but not across them [3, 5]. Boundary edges are crease
edges with only one face. Figure 2 also shows the mask of
edge-vertices and vertex-vertices along a crease or bound-
ary edge.

3. Adaptive Catmull-Clark Subdivision

3.1. Selecting the Subdivision Area

Adaptive subdivision involves selecting the areas of the
mesh require refinement. This decision can be made either
by the application or the user. Higher curvature regions of
the mesh require more subdivisions than planar areas. In-
cidentally, higher curvature areas contain more details than
flat areas. Dihedral angle, the angle between the face nor-
mals of adjacent faces, provides a sufficient measure of the
surface curvature. In real-time visualization, other factors
such as frustum visibility, distance to the viewer, and the
pixel area of faces, may be used to tune the selection al-
gorithm. For example, a view frustum visibility test can
determine whether a face should be refined [1].
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Figure 3. Catmull-Clark subdivision

Figure 4. Adaptive subdivision of a user selected
area as indicated by the highlighted vertices on the
left

In rendering applications, the selection algorithm may be
derived by non-geometric properties of the mesh. For ex-
ample, to generate smooth silhouettes the selection criteria
can be set to take the normal of each face and the view vec-
tor into consideration and subdivide all the faces that share
edges on the silhouette boundary [6]. In non-photorealistic
rendering methods that are based on edge size [11], the se-
lection area can be determined by the size of the coarse
edges.

In modeling applications, users may need local control
over the level of detail of the model. Artists sometimes em-
phasize part of a scene by increasing the detail of that area.
Lastly, adding features to a mesh generally necessitates an
increase in the level of detail where the features are being
added. In these cases, the subdivision area is determined
by the user. Figure 4 shows adaptive subdivision of a user
defined area.

3.2. Handling Cracks

Though the idea of adaptive subdivision is simple, care
must be taken to avoid connectivity inconsistencies that
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Figure 5. Cracks due to subdivision depth difference
of adjacent faces. The numbers represent the current
subdivision depth of each face

arise as the result of subdividing a subset of faces of the
mesh. Figure 5 shows what happens when only one face
of the mesh is subdivided. Edge-vertices between faces
with different subdivision depths create cracks when they
are repositioned in the subdivision process. Cracks must be
removed from the mesh for editing, rendering, and process-
ing of the mesh. Since the subdivision algorithm depends
on the connectivity of the mesh, it is also crucial that cracks
are removed after each subdivision step.

The most common method to remove cracks is to insert
new edges that connect the edge-vertices on the cracks to
the other vertices within the face with lower subdivision
depth [8]. We call these newly introduced edges crack re-
moving edges (CREs). Figure 6 shows two possible cases
where cracks may appear in a face and how to remove them.
When a face has only one crack, it is triangulated by con-
necting the edge-vertex that caused the crack to the rest of
the vertices in the face. If a face has two cracks, then the
crack is removed either by triangulating the face or by in-
serting a face-vertex in the face and connecting it to the
vertices to produce quads. This later approach is preferred
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Figure 6. Inserting edges to remove cracks. Two pos-
sible methods exist when there are two cracks in a
face: (a) quads (b) triangles.

because quad faces produce ordinary vertices when subdi-
vided. However, if a face with a large number of vertices
is subdivided, then this method will lead to many other face
refinement. In this case, the first approach is preferred. Usu-
ally, faces with more than two cracks are subdivided using
the regular Catmull-Clark subdivision rules.

This method removes cracks efficiently, but as illustrated
in Figure 7, it has some side-effects. The connectivity and
valence of edge-vertices on the cracks are changed. Since
these vertices lie within the selected subdivision area, the
shape of the limit subdivision surface is modified. Repeated
subdivisions of the selected area produces high valence ver-
tices where new edges are introduced to remove cracks.
High valence vertices make long faces that are undesired
in both analysis and rendering of the surface. Finally, if
a selected region is subdivided repeatedly, the subdivision
depth difference between the selected and unselected areas
becomes larger after each subdivision. This results in a sud-
den change in the resolution of the mesh from coarse to fine
areas and is analogous to aliasing. In rendering and mesh
analysis applications, it is desirable to have a smooth tran-
sition from the coarse to fine regions of the mesh.

3.3. A Combined Method

Subdivision of a subset of the faces of the mesh changes
the connectivity of some vertices within the selected subdi-
vision area, and therefore it affects the resulting limit sur-
face. In adaptive subdivision for triangular meshes, two
separate methods attempt to avoid this side effect. One
method restricts the mesh by enforcing the vertices involved
in the subdivision process to be at the same subdivision
depth [13]. If during subdivision it is determined that the
subdivision depth of vertices do not match, then the adjacent
faces at lower subdivision level are refined until all vertices
have the same subdivision depth. The other method, red-
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Figure 7. Comparison of adaptive subdivision with
simple crack removal algorithm to global subdivision

green triangulation [2], attempts to avoid irregular shaped
meshes. Cracks are removed using CREs, but if a face con-
tains more than one crack per edge, then the face is regu-
larly refined. This effectively limits the subdivision depth
difference of adjacent faces. It is possible to combine these
two methods to obtain a proper adaptive subdivision surface
with desirable connectivity.

Figure 8 shows an example of extending these algo-
rithms to Catmull-Clark subdivision. To restrict the mesh,
for each selected vertex the subdivision depth of its neigh-
bours are checked. If they do not match, then the face with
the lower subdivision depth is subdivided. During subdi-
vision, CREs are used to remove crack as described previ-
ously, and if a face contains more than one crack per edge,
then it is regularly refined. Note that, if only quads are pro-
duced when removing cracks, then the mesh is always re-
stricted. However, in the general case of meshes with arbi-
trary faces, the mesh restriction criterion is required.

Although this combined method satisfies all the require-
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Figure 8. Combination of mesh restriction and red-
green triangulation to remove cracks. The blue faces
are refined because of cracks, and the green faces are
refined to satisfy the restriction criteria.

ments that we set earlier in this paper, it is not efficient.
Each face refinement, whether performed to obtain a re-
stricted mesh or to avoid multiple cracks per edge, may pro-
duce new cracks. Thus, a single adaptive subdivision step
involves recursive checking for cracks and ensuring mesh
restriction until no faces are split. In the worst case, this
algorithm may refine all faces of the mesh. Incremental
subdivision not only produces proper adaptive subdivision
surfaces, but also it is not more complex than regular subdi-
vision.

4. Incremental Catmull-Clark Subdivision

We now describe our new incremental method of adap-
tive subdivision for Catmull-Clark surfaces. This algorithm
generates meshes with proper connectivity and geometry.
The generated surface gradually changes in resolution from
coarse to fine areas. Reflecting the local nature of Catmull-
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Figure 9. Ring one and two expansion of the selected
vertices

Clark subdivision scheme, our incremental subdivision also
operates locally on the mesh.

Let V = {v0, v1, . . . , vk−1} be the vertex set of the cur-
rent mesh. Let S be subset of V . We wish to adaptively
subdivide S such that the limit surface generated from S is
exactly the same as when V is globally subdivided. To do
this, we expand the selected set S to a new larger set of ver-
tices, and then we subdivide this larger set. More formally,
at each subdivision level, expand S to Er(S) by including
the vertices of V that are inside the r-ring neighbourhood
of at least one vertex of S

Er(S) =
⋃

v∈S

Nr(v), r > 0, (3)

where N r(v) denotes the r-ring neighbourhood of v.
Therefore, w ∈ V is in N r(v) if and only if there is a path
from v to w with maximum r edges. In graph theory terms,
the distance of v and w must be smaller or equal than to
r. Figure 9 shows E1(S) and E2(S) of a group of selected
vertices. Next, subdivide Er(S) and use CREs to remove
cracks. Let S

′

be the new selected area that is the result of
subdividing S. Figure 10 illustrates two steps of incremen-
tal subdivision by using E1(S) expansion. As Figure 11
shows, incremental subdivision can be used whether quads
or triangles are used when removing cracks in faces with
two cracks.

Adaptive subdivision of Er(S) produces a limit surface
from S that is exactly the same as when the entire mesh is
subdivided. The reason for this is that edge-vertices whose
connectivity was changed to remove cracks lie outside
Er(S

′

), so the connectivity of vertices within S
′

remains
unchanged. In addition, vertices of S

′

and their neigh-
bours are at the same subdivision depth because Er(S) in-
cludes the r-ring neighbours of S in the subdivision pro-
cess. Therefore, the limit surface of S is not changed due
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Figure 10. Incremental subdivision on the left. The
dots indicate selected vertices for subdivision.

(a) (b)

Figure 11. Comparison of the meshes produced
when (a) quads are used and (b) triangles are used
to remove cracks in faces with two cracks.

Figure 12. Incremental subdivision of the faces on
the interior boundary loop results in a smooth change
in the subdivision level from coarse to fine areas

to the adaptive subdivision. Furthermore, an r-ring neigh-
bourhood of S before subdivision corresponds to 2r-ring
neighbourhood of S

′

. Therefore, edge-vertices with modi-
fied connectivity to remove cracks and the opposite vertices
they are connected to are 2r and 3r edges away from S

′

,
respectively. This prevents the incremental subdivision al-
gorithm from producing high valence vertices when S

′

is
subdivided. Finally, 3r-ring neighbours of S

′

are always
one level of subdivision lower than its 2r-ring neighbours.
This yields a surface that gradually increases in subdivision
depth from coarse regions to the incrementally subdivided
areas. Figure 12 demonstrates this effect that is analogous
to anti-aliasing. Larger values of r result in surfaces with
smoother transition from coarse to fine.

Incremental subdivision of a selected area that includes
boundaries is the same as incremental subdivision of inte-
rior vertices, with the difference that boundary edges are
split according to crease rules.

5. Results

To implement subdivision we used the vertex-vertex sys-
tems [10] that accurately represents the local nature of sub-
division operations. This data structure holds a set of ver-
tices along with an ordered set of their neighbours. A single
pass over the mesh creates face-vertices and edge-vertices,
repositions vertex-vertices, and then interconnects the new
vertices. Incremental subdivision is a simple extension of
this algorithm, but operates only on the selected vertices for
subdivision. During subdivision, r-ring unselected neigh-
bours of each selected vertex are tagged and included in
the subdivision process. Edge-vertices are only created
on edges with both vertices selected or tagged. A face-
vertex is created when all vertices of the face are selected or
tagged. Finally, when the new vertices are interconnected,
the cracks are removed by using CREs as described in sec-
tion 3.2.

Incremental subdivision can be used in a number of ge-
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Figure 13. Comparison of incremental subdivision based on dihedral angle (top) and global subdivision (bottom)

ometric modeling applications. An example of such appli-
cation is creating efficient smooth surfaces by only subdi-
viding high curvature regions of the mesh. In Figure 13,
dihedral angle is used to select and incrementally subdivide
high curvature areas of the model. A benefit of using in-
cremental subdivision is that subdivision depth of adjacent
faces is limited, so the level of detail of the surface changes
gradually from coarse to fine areas. Since no analytical pre-
computation is required, the model can be edited at any sub-
division depth. Users may also locally increase the resolu-
tion of the mesh for more controlled editing as illustrated
previously in Figure 4. Incremental subdivision can also be
used to add sharp features to a model. In Figure 14, faces
on sharp or boundary edges are incrementally subdivided.
An advantage of incremental subdivision is that face selec-
tion is performed automatically through Er(S) expansion
at each subdivision level. This method also produces sur-
faces with fewer face count while achieving the same visual
quality as subdivision of the entire mesh.

6. Conclusion

Adaptive subdivision allows us to create surfaces with
different subdivision depths by subdividing select areas of
the input mesh. To remove cracks–that are the result of sub-
division depth difference of adjacent faces–new edges are
introduced into the mesh. However, this method of remov-
ing cracks produces surfaces with undesirable properties.

Using a combined method of restricting the mesh and lim-
iting the depth difference of adjacent faces, it is possible to
adjust this method to obtain better behaved adaptive subdi-
vision surfaces. The disadvantage of this algorithm is that
it is inefficient. We introduced incremental adaptive subdi-
vision for Catmull-Clark subdivision surfaces. It produces
surfaces that have proper connectivity and geometry with a
gradual change in subdivision depth from coarse and fine
areas. Based on our comparison, incremental adaptive sub-
division is more efficient than the combined method to re-
move cracks, while it is still simple to implement. It can
also be effectively used in modeling and rendering applica-
tions.
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