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Figure 1: Lake Urmia 89 layers SIS from 2013-2017

ABSTRACT
The Earth’s surface is live and dynamic due to natural and manmade events. Tracking and visualizing Earth-features
(e.g. water, snow, and vegetation) is an important problem. Earth observation satellite imagery like Landsat 8 makes
the tracking feasible by providing detailed multispectral imagery at regular intervals. In this paper, we explore a
single image summary approach to detecting changes in Earth-features by using the Landsat 8 dataset. In our system,
we use appropriate thresholds for spectral indices to identify features, reference datasets, and combine multiple
images using predefined color palettes to generate a single image summary of features for a region. Furthermore, we
illustrate the benefit of our method over traditional visualizations with case-studies for the Lake Urmia, the Amazon
Rainforest, and the Bering Glacier.
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1 INTRODUCTION
Earth is dynamic and ever-changing planet. Natural
resource managers, policymakers, researchers, and, the
general public need information about these changes to
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full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

detect environmental changes and assess the impacts
of global warming [Roy et al., 2014]. Displaying a
video or scientific charts are useful but not sufficient
to clearly show the changes in the Earth-features (e.g.
Vegetation, water, snow) present on the Earth’s surface,
due to phenomenon like desiccation of lakes, melting of
glaciers, and deforestation. Changes in individual Earth-
features are not always visible in regular RGB images.
Moreover, it is hard to perceive significant changes in
a short period of time. Capturing changes in the Earth-
features and visualizing them in an appropriate way is a
fundamental and important problem.
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The regular collection of datasets performed by Earth
observation satellites can play an important role in ad-
dressing the issue of capturing Earth-feature changes. In
this paper, we use Landsat 8 satellite imagery datasets
to identify and detect changes in Earth-features. In ad-
dition to regular RGB images, Landsat 8 data contains
spectral bands (i.e. a range of frequencies along the elec-
tromagnetic spectrum) that can reveal important features
of a region such as the prevalence of snow, water, and
vegetation.

With respect to the visualization challenge, techniques
like animated timelapses and image lineups are tradi-
tionally used. These techniques are used to represent
temporal changes in Earth-features. One major prob-
lem with the animated timelpase approach, like Google
Timelapse [Tim, ], is the loss of context. To identify
Earth-feature changes using a video, the observer needs
to move back and forth between video frames. In the
second traditional approach, a number of images are
placed side-by-side to allow for comparisons between
multiple frames. The main drawback to the use of mul-
tiple images on screen (or on paper) is that the size of
the individual images needs to be reduced to fit all of
them in a single frame. The size reduction results in
detail loss for high-resolution images, and is especially
pronounced when there are many images.

To address the limitations of these traditional techniques,
in this paper, we propose a novel single image summary
(SIS) for Earth-features using Landsat 8 images ( e.g.
Figure 1 ). SIS represents temporal changes to the Earth-
features in a given region over a fixed duration of time.
To create a SIS, we determine the Earth-feature recur-
rence, e.g. water existence, for any location in the region
of interest and then map the resulting recurrence values
to predefined colors. To provide a better context for the
feature of interest, we call this location-based recurrence
distribution a recurrence map. We also add an overlay
of the traditional map of the surrounding areas. SIS rep-
resentation resolves the loss of context issue and retains
the resolution of the original image dataset.

To prepare a SIS, we download data for a region covering
the duration of interest. The cloudy pixels are detected
using the Quality Assurance band provided by Landsat
8. In the next step, relevant Earth-features are identified
by using spectral band operations. After feature iden-
tification, we generate the recurrence map by counting
the occurrence of that feature in every location in the
region. To facilitate these operations, and as a proof of
concept, we have implemented a software prototype. In
our system, we use the recurrence map and predefined
color palettes to generate single image summaries for
three Earth-features: vegetation, water, and snow. We
use our system in three case studies : (i) Lake Urmia ,
(ii) the Amazon Rainforest, and, (iii) the Bering Glacier.

We also discuss the impact of different color palettes on
results.

2 BACKGROUND AND RELATED
WORK

2.1 Landsat 8
For over 40 years, seven Landsat satellites have collected
spectral information regarding the Earth’s surface. The
latest satellite dataset in the series, Landsat 8, was made
available for free public use on May 30, 2013 [Roy et al.,
2014]. The near polar orbit of Landsat 8 allows it to
regularly visit an area every 16 days. This temporal
resolution allows researchers to track seasonal changes
on the Earth’s surface, as in this work, which tracks
changes in time-varying Earth-features.

The near polar orbit of Landsat 8 allows it to regularly
visit an area every 16 days. This temporal resolution al-
lows researchers to track seasonal changes on the Earth’s
surface, as in this work, which tracks changes in time-
varying Earth-features.

Landsat 8 measures the energy reflected by land surface
across different frequency ranges from the electromag-
netic spectrum. Each range of frequency is called a band.
Land features like water, vegetation, and snow reflect en-
ergy based on their unique surface characteristics. Thus,
measuring reflected energy helps one identify the ob-
served feature. In multispectral satellite imagery, multi-
ple band data is used to create spectral indices that make
it possible to identify features. The Green (0.533 - 0.590
micrometers), Red (0.636 - 0.673 micrometers), Near-
infrared (0.851 - 0.879 micrometers), and Shortwave
infrared (1.566 - 1.651 micrometers) bands have been
used in this research. These bands are combined to cre-
ate metrics that assist in discriminating Earth-features.

2.2 Spectral Indices
A spectral index is a metric used to identify specific
features or phenomena in remote sensing imagery. It
is prepared by linear or nonlinear combinations of two
or more bands. Vegetation, water, and snow indices are
one of the most studied and commonly used spectral
indices [Viña et al., 2011] in the field of remote sensing.
An optimally designed spectral index is supposed to be
as sensitive as possible to the essential feature of interest
and insensitive to nonessential features in the observa-
tion area [Verstraete and Pinty, 1996]. In this paper,
we particularly focus on spectral indices for vegetation,
water, and snow.

The normalized difference vegetation index (NDVI) is a
spectral index that can be used to analyze remote sensing
measurements and assess whether the target contains
live green vegetation [Rouse Jr et al., 1974, Kriegler
et al., 1969]. Live vegetation absorbs solar radiation in
the photosynthetically active range with a wavelength
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between 400 to 700 nanometers. Wavelengths up to red
can be used by leaves to synthesize organic molecules
while NIR and longer wavelengths cannot be used for
synthesis. Hence, the leaves reflect energy of the NIR
range. NDVI utilizes these facts in a simple form as

NDV I(p) =
NIR(p)−Red(p)
NIR(p)+Red(p)

(1)

where NIR(p) and Red(p) are respectively the near in-
frared and red reflectance at a pixel p in the band. It is
clear that NDVI values occupy the range [-1,1].

For areas with dense vegetation, NDVI has a high value
(between 0.3 to 0.8) [Rem, ]. Other vegetation indices
are also utilised to detect vegetation but NDVI is the
most frequently used in remote sensing studies [Viña
et al., 2011].

NIR radiation is strongly absorbed by water bodies
and strongly reflected by soil and other surfaces. Fur-
thermore, visible radiation (Red, Green, and Blue) is
strongly reflected by water bodies. NDWI utilizes these
facts in a simple form as

NDWI(p) =
NIR(p)−Green(p)
NIR(p)+Green(p)

(2)

where NIR(p) and Green(p) are respectively the near in-
frared and green reflectance at a pixel p in the band. The
positive values of NDWI segregate open water bodies.
The spectral response of water bodies indicates that the
Green band is more suited towards segregating water fea-
tures and keeping suitable ranges of NDWI as compared
to Red and Blue bands [Boland, 1976, McFEETERS,
1996].

Its challenging to identify snow in satellite images be-
cause snow and clouds are equally bright in the visible
wavelength. While snow cover absorbs SWIR radiation,
clouds reflect SWIR radiation strongly. To utilize this
difference in contrast between different bands, a normal-
ized difference snow index (NDSI) is formulated [Hall
and Riggs, 2011]. NDSI utilizes these facts in a simple
form as

NDSI(p) =
Green(p)−SWIR(p)
Green(p)+SWIR(p)

(3)

where Green(p) and SWIR(p) are respectively the green
and short-wave infrared reflectance at a pixel p in the
band. Again, values range from -1 to 1. The threshold
for determining the presence of snow varies and needs
to be decided on a per-region basis.

2.3 Geospatial visualization
Time-varying data visualization is a well-studied area
in information visualization of abstract data [Aigner
et al., 2011,Moere, 2004,Chang et al., 2007,Wang et al.,

2008]. Visualizing time-varying geospatial data is more
challenging because of its location dependency [Dykes
et al., 2005].

Videos are commonly used to visualize changes in time-
varying datasets. In [Rav-Acha et al., 2006], video syn-
opsis has been used to reduce video size while retaining
dynamic activities in a video. Google has created a
timelapse tool using satellite imagery datasets to visual-
ize changes in the Earth over past three decades [Tim, ].
In [Hung and Wu, 2005], the authors use videos to visual-
ize changes in the Great Salt Lake. In general, the use of
videos for visualizing these changes provides a sense of
the overall trends but comparisons between consecutive
frames is hard. For geospatial datasets, the comparison
becomes harder, as the position of geospatial features
in time is also important. The videos of time-varying
geospatial data can be visualized on a physical globe for
easy understanding [Dadkhahfard et al., 2018].

To enable better frame comparison, multiple image line-
ups can be used [Beecham et al., 2017, Wickham et al.,
2010]. For example, multiple image lineups have been
used to show changes in Lake Urmia over time [Tourian
et al., 2015]. To prepare the lineup, the authors use
MODIS data [MOD, ] from 2000 to 2014. There are
three disadvantages of the image lineup approach. First,
the size of an individual image is decreased to accom-
modate all in a lineup. Second, only a limited number of
frames can be placed in a lineup while still retaining the
important details of a region. Third, it is hard to compare
more than two images at a time in order to understand
the changes occurring at a location.

Images can present and retain time-varying information
in a single frame when using an appropriate color palette.
An appropriate color-palette helps in logical organiza-
tion of data and captures the trends and relationship
within data. In addition to an appropriate palette, choos-
ing the right number of colors for the color palette is an
important aspect of identifying time-varying changes in
Earth-features. In [Harrower and Brewer, 2003], two
categories of color schemes, called sequential and di-
verging, were suggested. Furthermore, a low number of
color palette is suggested for the proper representation
of data classes in thematic maps. In sequential schemes,
low data values are represented by light colors and high
data values are represented by dark colors. Sequential
color schemes are used to represent data that changes
from a high to low value. In diverging color schemes, the
mid data value is represented using one color and two
different sequential schemes diverge from this shared
middle value. It is evidenced in [Gramazio et al., 2017]
that palettes with fewer colors are more discriminable
while more colors are harder for users to process.

The color wheel is a common tool used to design colors
for a palette. Figure 2 shows one of the most commonly
used wheels. Adjacent colors on the color wheel are

3



Figure 2: Basic color wheel. Source [Bas, ]

called analogous colors. They are frequently found in
nature and harmonize well to avoid jarring effects in the
image [Brown and Samavati, 2017, Bas, ].

3 METHODOLOGY
The main goal of this work is to create a single image
summary of Earth-features in a selected region that sum-
marizes a certain duration of time. One challenge lies in
how to capture changes in Earth-features. Another chal-
lenge is how to visualize these features. We use relevant
bands from Landsat 8 datasets to create spectral indices
that help in identifying the Earth-features. To visualize
Earth-feature changes, we generate a recurrence map for
the region of interest and apply a color palette based on
the recurrence of feature in any location. This leads to
the generation of a SIS.

3.1 Capturing Earth-feature changes
Landsat 8 data can be accessed freely on Amazon Web
Services (AWS) and Earthexplorer [Lan, b]. Earthex-
plorer only allows bulk data download for scenes, which
results in long download times and more storage usage.
We use AWS as the downloading source as it offers good
speed and the option to download individual band data.
AWS is also a suitable target for creating a web crawler
because it provides a hyperlink for each file.

Landsat 8 images are separated into scenes for easy
downloading. Each scene represents an area of approx-
imately 185 km by 185 km and contains 11 bands and
metadata files. The hyperlinks for around 2 million
Landsat 8 scenes are available in a file called scene-list
that is provided by AWS. The file is updated daily with
the latest scenes and each line in the file contains the
details of the geographic location of the scene and a url
for scene download.

We developed a downloader program that downloads
scenes based on scene-list, date, bands, path, and row
parameters. To download data in the range of 2013-2017
takes approximately an hour of time. After the down-
loading step, our system detects cloudy pixels using the
Quality Assurance (QA) band provided by Landsat 8.
The QA band contains bit-packed information about the
surface conditions, which helps to indicate clouds. If
the decimal value of a pixel is above 31744, the pixel is
likely to be cloudy [Lan, a].

Due to the non-spherical shape of the Earth and near-
polar orbit of Landsat 8, different day scenes from the
same region (identical path and row) are not exactly
aligned. Exact alignment is crucial for temporal stacking
of images.

Landsat 8 scenes are projected using the Universal Trans-
verse Mercator projection system [Lan, c]. There is
a linear mapping between the image coordinate (rows
and columns) and the (geographical) UTM coordinate.
Our system uses this linear mapping for the purpose of
aligning images. The system uses the image and UTM
coordinate system values from metadata files to align
pixels for all layers from the region of interest. The
system loads all the referenced layers in memory for the
spectral index calculation used to identify the feature of
interest (Section 2.2).

The calculated value is compared to a threshold and,
based on whether the spectral index value is above or
below that threshold, the pixel at point p in each of
the layers is classified as belonging to a feature. The
threshold for identifying features depends on a number
of factors, including the physical properties of observed
features or the analyst making the observation [Cheng
et al., 2008, McFEETERS, 1996, Hall and Riggs, 2011].
For example, values of NDWI greater than zero com-
monly indicate water. In our system, an appropriate
threshold is decided for each region based on visual in-
spection. Note that the same threshold is used for all
layers in a single region.

3.2 Recurrence map creation
After the stack of layers is classified into features, the re-
currence map is prepared. A recurrence map represents
the recurrence of a particular feature in the region of
interest (ROI). Our system has the capability to choose
the ROI for the recurrence map preparation. For this
research, the ROI is chosen to be inside the boundaries
of a Landsat 8 scene.To better understand the recurrence
map, n temporal layers in the image collection are con-
sidered. For each point p of the map, the repetition of the
feature at p, r(p), is stored in the recurrence map. Figure
3 illustrates the recurrence map. The value of r(p), is
normalized by the total number of non-cloudy layers at
that point. The recurrence map can be constructed via a
one time traversal of all layers in the current time range
and stored. Once a recurrence map is created, various
color maps can be used on it without the need to traverse
all layers again.

3.3 Color-mapping
Our system follows a color-mapping procedure to apply
a particular color-palette to the recurrence map in order
to generate a SIS. Let us denote the current color palette
by c ={c1, ..., cm} where m is the number of colors.
Each recurrence value is mapped to a color ci (for some
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Figure 3: Recurrence map creation

i). The color-palette and range of the recurrence map are
also indicated in the SIS results. To provide a stronger
distinction among feature categories, we choose palettes
with a small number of colors [Telea, 2014]. Since the
range of r(p), is normally larger than m, a lookup table
L is needed to assign a color to any r(p)

L : r(p)→ c

. In our system, L is a uniform sampling of color maps
by default. For practical case studies, one may tweak
this transfer function to customize the result. Based on
user preferences, our system can easily apply predefined
sequential, divergent, and user-defined custom color-
palettes to the recurrence map. We can also apply natural
colors present in the RGB satellite images of the region.
The color schemes for each of the case studies have been
chosen in order to highlight the changes in features and
maintain the context of surrounding regions.

4 CASE STUDIES
To evaluate our method and the implemented prototype,
we have experimented on three case studies to highlight
changes in Lake Urmia in north west Iran, the Amazon
Rainforest in Brazil and the Bering Glacier in Alaska.

4.1 Lake Urmia
There has been a decrease in the water level of lake
Urmia since the 1990s [Lak, ]. Some of the major
speculated reasons for this decline are dam construc-
tion, diverting water for irrigation, less precipitation,
and warmer climates [Hoseinpour et al., 2010]. There
are many repercussions of this phenomenon. Reduc-
tion in water level is causing the salt levels to increase,
thus causing the native brine shrimp population to de-
crease [Abbaspour and Nazaridoust, 2007]. Since brine
shrimp is the major food source for the bird population
in this region, it is causing significant ecological disrup-
tion. The current increase in salt content is also causing
the surrounding plant population to decrease as the dry-
ing of the lake also leaves a huge salt trail around the
lake boundary.

In this section, SIS have been prepared for lake Urmia
in order to observe the time-varying changes in water

recurrence. A description of the area of study, choices
of relevant spectral indices, and color palette are crucial
elements of generating the summary images.

The study area is the Lake Urmia region in Iran lying
between Urmia and Tabriz cities (see Figure 1). Ac-
cording to the Landsat 8 operational orbit WRS-2 [wrs,
], scenes correspond to path 169 and row 34. Cloudy
pixels in the dataset were detected using the QA band
(see Section 3.1). Positive values of NDWI are assumed
to indicate the presence of water in this region. After
classification of water in each layer, the recurrence map
is prepared. In the next step a color-mapping is applied
to the recurrence map. A color range from red to blue
from the color wheel was used in order to represent Lake
Urmia (see Figure 2). Blue is assigned to the maximum
recurrence value as water is typically represented as blue
in pictures. Furthermore, a range of analogous colors
and a variety of colors are used in order to represent
close recurrences while at the same time distinguishing
recurrences easily. Recurrences close to zero indicate
feature absence and are assigned to a white color so that
they don’t distract one from observing nonzero feature
presence. The objective is to maintain an intuitive under-
standing of the feature of interest with this color choice.
Finally, the SIS is overlaid atop Google maps. In order
to maintain a relevant location context in the SIS results,
only important information such as roads, labels, and
major city names have been kept. Figure 1 shows the
result for Lake Urmia with a 12 color palette from a
recurrence map created in the period 2013-2017.

There are some important observations evident from the
result:

1. A dessication in the wet region of the lake is clearly
visible in the result. The inner region is blue while
the boundary of the lake is colored otherwise. The
upper part of Urmia has water present most of the
time, as can be seen in the result image. Because of
the difference in recurrence in the upper and lower
parts, it looks like the lake could separate into upper
and lower parts. Similar conclusions are obtained
by combining elevation and surface water data from
multiple sensors and satellites to track lake water
level [Tourian et al., 2015].

2. Another observation is the existence of several
streams and rivers around the lake. It seems that they
are important sources of water intake, however in
the visualization they are usually presented in dark
red. Dark red is assigned to places that rarely have
water recurrence during the observation period. The
limited sources of water inflow is one of the main
reasons for the drying of lake over the years.

3. The figure also shows that there is a large red area sur-
rounding the lake boundary. The red color suggests
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(a) January (b) February (c) March (d) April (e) May (f) June

(g) July (h) August (i) September (j) October (k) November (l) December

Figure 4: Multiple image lineup of Lake Urmia from 2015

that the region rarely has water present. In [Stone,
2015], it has been speculated that the boundary of
the lake usually has salt deposits. Winds carry salt
deposits to settlements near the lake which impacts
vegetation and causes health problems for people
living in these surrounding areas.

Here we discuss the advantages of SIS (Figure 1) over
traditional methods of visualizing the layers frame-by-
frame (timelapse or animation) or by placing them in a
lineup (Figure 4).

• Only one layer at a time can be observed with the
timelapse visualization, and the context of both pre-
vious and subsequent images are lost. With SIS, its
possible to see all changes in the water recurrence
over time without losing the context. The recurrence
of a feature at p can be easily deciphered by the shade
of color at p.

• Showing 12 layers as images side-by-side requires
more space and, consequently, either the resolution
of each layer has to be decreased or it needs to be
presented on a larger screen. As the number of layers
increase, both of the previous problems are exacer-
bated. The resolution of SIS is independent of the
number of layers that need to be visualized. So,
whether 89 layers or 12 layers are being visualized,
the resolution of the summary image doesn’t change.

• SIS captures the trends of changes happening in the
region. By using SIS, one can evaluate how fre-
quently a feature occurs in a region. The SIS with
its color palette easily and immediately highlights
which regions have a permanent occurrence of a fea-
ture. An example is shown in Figure 1, where one
can observe that the upper part of Lake Urmia always
has water while the lower part has lesser occurrence.

4.1.1 Comparison of two SIS

Although using one SIS illustrates a number of time-
varying changes, experiments were conducted to observe
the benefits of comparing two SIS (see Figure 5). In our
experiments, comparisons of two different time periods
were done and the results have been shown in Figure 5
On comparing Figure 5a and Figure 5b, the island area
in white near the lower right of the image seems to be
increasing in size from 2013-2014 to 2015-2016. The
islands have almost merged in 2015-2016. The yellow
area near Gamichi is increasing in area over time. This
indicates less water recurrence and drying of the lake,
providing clear support for the increased salt deposition
in the area as mentioned in [Stone, 2015].

4.1.2 Experimentation with different color
counts

To test the impact of different color counts on results,
summaries for 2 year durations have been prepared us-
ing a color palette with 6 colors (see Figure 6). One
can see similar trends in Figure 5 with 12 colors and
Figure 6 with 6 colors. There are some advantages of
using a larger number of colors. The color transition
is smoother in case of 12 colors. The small number of
colors in the palette can mask the underlying changes
taking place in the region. For example, the difference
between recurrences in the upper and lower parts of
Urmia is more prominent in Figure 5b as compared to
Figure 6b. There are some patchy deep blue colors that
we observe in lower parts of Figure 6b because a wide
range of recurrences have been assigned to a deep blue
color so its possible to segregate these recurrences in
Figure 5b but not in 6b. However, there are some disad-
vantages of choosing a large number of colors. Using a
large number of colors increases redundant patterns in
the images (red patches for low recurrences). Moreover,
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(a) 2013-2014 (b) 2015-2016

Figure 5: Experimental results with 12 colors

(a) 2013-2014 (b) 2015-2016

Figure 6: Experimental results with 6 colors

having a large number of colors can make it difficult to
distinguish different recurrences.

4.2 Amazon Rainforest
Deforestation helps humans in some sense, but it has
extreme negative impacts on climate change and the
extinction of flora and fauna [Wor, ]. Brazil has re-
cently made huge progress in reducing deforestation and
in increasing reforestation [Bra, ]. As a result of this
progress, heat trapping emissions have been lowered in
Brazil as compared to other nations. The international
effort known as "Reducing emissions from deforestation
and forest degradation" (REDD+) contributed signifi-
cantly to this achievement [RED, ]. As part of this effort,
developing nations reduce deforestation whilst wealthy
nations compensate for economic loss. Norway pledged
2.5 billion dollars for the effort and Brazil pledged to
reduce the rate of deforestation drastically by 2020.

Rondonia, a state in Brazil, was the most deforested part
of the Amazon ecosystem in recent decades [Wor, ]. To

observe the vegetation trends in the region, a SIS for the
region has been created using path 232 and row 68 of
Landsat 8 data. A natural and sequential color-palette
has been used to generate the SIS. For example, dense
vegetation usually looks dark-green in nature as well
as in satellite imagery. Thus, a palette of dark-green
to white has been used in the Amazon Rainforest case
to represent high to low recurrences. A similar palette
is used by Google Earth for showing regions with live
and dead vegetation. In a recent work, a similar palette
was adopted to apply cell shading to terrain features in
order to represent trees [Brown and Samavati, 2017].
The color palette was sampled from the paintings of
famous panorama maps artist Heinrich Berann in order
to replicate his hand-drawn style.

The results are created using 34 layers from the dura-
tion of 2013-2014 and 34 layers from the duration of
2015-2016. On comparing Figure 7a and Figure 7b, one
can observe that the amount of vegetation has gener-
ally decreased in the region. The dark green regions on
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(a) 2013-2014 (b) 2015-2016

Figure 7: SIS for the Rondonia region (Amazon Rainforest)

left of Figure 7a have changed to light green in Figure
7b, which indicates decreased recurrence of vegetation
(see A in Figure 7). White regions in the center have
increased and green regions have decreased in Figure 7b
when compared to Figure 7a, which again indicates a
decrease in vegetation recurrence. In a few places, there
is an increased recurrence too. These results suggest that
the deforestation is still going on over the years (see A
in Figure 7) while there has been some positive results
from reforestation efforts (see B in Figure 7).

4.3 Bering Glacier
The Bering Glacier is one of the largest glaciers in North
America and is located in Alaska. According to [Ber, ],
the glacier has been retreating at an alarming rate of 10
miles per year. Ground measurements are hard to per-
form for glaciers due to the harsh conditions prevailing
in glacial regions. Thus, remote sensing measurements
make it easier to understand ongoing processes in glacial
regions.

Using Landsat 8 data from 2013-2017 and Normalized
Difference Snow index with an intuitive color palette,
Figure 8 has been prepared. The results are shown in
Figure 8. The scenes correspond to path 64 and row 18
and we use 5 colors to indicate the snow recurrence. 39
layers from 2013-2014 and 43 layers from 2015-2016
were used to prepare the SIS results. The green color
corresponds to very low values of snow recurrence. The
cyan color in the bottom half of the image indicates the
North Pacific ocean.

Most of the glacier region has snow present all around
the observed duration, which is indicated by deep blue

color. The image clearly shows the glacier retreating.
The central medial moraine region [Shuchman and Jos-
berger, 2010] in the top left between the Bering and
Steller Glaciers shows sparse and periodic snow cover
(see A in Figure 8). On comparing Figure 8a to Figure
8b, it seems that the front of the Bering Glacier has re-
treated from 2013-2014 to 2015-2016. Furthermore, in
2015-2016, the occurrence of snow around the boundary
of the glacier seems to be decreasing (see vegetation-
snow interface in Figure 8).

5 CONCLUSION
In this paper, we have explored the key aspects of gen-
erating single image summaries of Earth-features using
Landsat 8 data. We have discussed techniques to identify
Earth-features, detect and ignore clouds, reference lay-
ers, calculate recurrence of features, and apply a color
palette to generate the result. We have presented results
and discussed the implications of the results using dif-
ferent counts of colors and layers. We have shown the
utility of summaries in detecting changes by describing
case studies of several sample areas. Landsat 8 data was
obtained from AWS for this research. Our results show
change trends which are consistent with other studies
and identify new trends which may be utilized by other
researchers.

There is room for future work. Clouds hamper the abil-
ity to observe land cover in Landsat 8 and sometimes
bring noise into the results. An automatic method for
reconstructing data that is hidden by clouds would gen-
erate better results. Additionally, it would be interesting
to use Landsat 8 along with MODIS and other satellite
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(a) 2013-2014 (b) 2015-2016

Figure 8: SIS for the Bering Glacier region

imagery datasets. Although MODIS has a coarse spatial
resolution, its fine temporal resolution of 1 day seems
promising towards capturing the change trends.
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